Advertisement

Archives of Virology

, Volume 162, Issue 2, pp 469–475 | Cite as

First report of feline morbillivirus in South America

  • Gabriela Molinari Darold
  • Amauri Alcindo Alfieri
  • Lívia Saab Muraro
  • Alexandre Mendes Amude
  • Rosana Zanatta
  • Kelly Cristiane Ito Yamauchi
  • Alice Fernandes Alfieri
  • Michele Lunardi
Original Article

Abstract

Feline morbillivirus was first identified in healthy and diseased stray cats captured in Hong Kong. Recently, it was demonstrated that the virus circulates within cat populations in Japan, Italy, Germany, and the USA. Importantly, an association between feline morbillivirus infection and chronic kidney disease was suggested by histological analysis of kidney tissue of infected cats. The aim of this study was to verify the presence and examine the genetic diversity of feline morbilliviruses associated with infections of domestic cats in Brazil. Seventeen cats without clinical manifestations of urinary tract diseases from a multi-cat household and 35 random client-owned cats admitted to the Teaching Veterinary Hospital for a variety of reasons were evaluated for paramyxoviral infection and the presence of uropathy. A fragment of the paramyxoviral L gene was amplified from urine samples using a reverse transcription semi-nested PCR assay. For the first time, we detected a feline morbillivirus strain that was genetically related to viral strains previously characterized in Japan in urine samples from cats in South America, in Brazil. This together with the recent description of feline morbillivirus identification within cat populations in the USA, suggests a possible widespread distribution of this viral agent on the American continent. Our data demonstrated feline morbillivirus RNA shedding mostly in the urine of cats without clinical, laboratorial, or ultrasonographic signs of urinary tract diseases. In contrast to previously published findings that associated feline morbillivirus infection with chronic kidney disease, we did not observe a clear relationship between feline morbillivirus RNA shedding in urine and kidney disease in the cats evaluated.

Keywords

Chronic Kidney Disease Feline Immunodeficiency Virus Canine Distemper Virus Urine Specific Gravity Gene Nucleotide Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was supported by University of Cuiabá and the Brazilian funding agencies National Counsel of Technological and Scientific Development (CNPq) and Brazilian Innovation Agency (FINEP). A.A.A. and A.F.A. are supported by research fellowships and grants from CNPq.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (2011) Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses. Elsevier, San DiegoGoogle Scholar
  2. 2.
    Selvey LA, Wells RM, McCormack JG, Ansford AJ, Murray K, Rogers RJ, Lavercombe PS, Selleck P, Sheridan JW (1995) Infection of humans and horses by a newly described morbillivirus. Med J Aust 162:642–645Google Scholar
  3. 3.
    Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT (1999) Fatal encephalitis due to Nipah virus among pig farmers in Malaysia. Lancet 354:1257–1259CrossRefPubMedGoogle Scholar
  4. 4.
    Renshaw RW, Glaser AL, Vancampen H, Weiland F, Dubovi EJ (2000) Identification and phylogenetic comparison of Salem virus, a novel paramyxovirus of horses. Virology 270:417–429CrossRefPubMedGoogle Scholar
  5. 5.
    Li Z, Yu M, Zhang H, Magoffin DE, Jack PJ, Hyatt A, Wang HY, Wang LF (2006) Beilong virus, a novel paramyxovirus with the largest genome of non-segmented negative stranded RNA viruses. Virology 346:219–228CrossRefPubMedGoogle Scholar
  6. 6.
    Bellini WJ, Rota PA (2011) Biological feasibility of measles eradication. Virus Res 162:72–79CrossRefPubMedGoogle Scholar
  7. 7.
    Appel MJG, Yates RA, Foley GL, Bernstein JJ, Santinelli S, Spelman LH, Miller LD, Arp LH, Anderson M, Barr M, Pearce-Kelling S, Summers BA (1994) Canine distemper epizootic in lions, tigers, and leopards in North America. J Vet Diagn Invest 6:277–288CrossRefPubMedGoogle Scholar
  8. 8.
    Daoust PY, McBurney SR, Godson DL, van de Bildt MW, Osterhaus AD (2009) Canine distemper virus-associated encephalitis in free-living lynx (Lynx canadensis) and bobcats (Lynx rufus) of eastern Canada. J Wildl Dis 45:611–624CrossRefPubMedGoogle Scholar
  9. 9.
    Meli ML, Simmler P, Cattori V, Martínez F, Vargas A, Palomares F, López-Bao JV, Simón MA, López G, León-Vizcaino L, Hofmann-Lehmann R, Lutz H (2010) Importance of canine distemper virus (CDV) infection in free-ranging Iberian lynxes (Lynx pardinus). Vet Microbiol 146:132–137CrossRefPubMedGoogle Scholar
  10. 10.
    Seimon TA, Miquelle DG, Chang TY, Newton AL, Korotkova I, Ivanchuk G, Lyubchenko E, Tupikov A, Slabe E, McAloose D (2013) Canine distemper virus: an emerging disease in wild endangered Amur tigers (Panthera tigris altaica). MBio 4:410–413CrossRefGoogle Scholar
  11. 11.
    Appel M, Sheffy BE, Percy DH, Gaskin JM (1974) Canine distemper virus in domesticated cats and pigs. Am J Vet Res 35:803–806Google Scholar
  12. 12.
    Ikeda Y, Nakamura K, Miyazawa T, Chen MC, Kuo TF, Lin JA, Mikami T, Kai C, Takahashi E (2001) Seroprevalence of canine distemper virus in cats. Clin Diagn Lab Immunol 8:641–644PubMedPubMedCentralGoogle Scholar
  13. 13.
    Woo PCY, Lau SKP, Wong BHL, Fan RYY, Wong AYP, Zhang AJX, Wu Y, Choi GKY, Li KSM, Hui J, Wang M, Zheng BJ, Chan KH, Yuen KY (2012) Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. Proc Natl Acad Sci USA 109:5435–5440CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Furuya T, Sassa Y, Omatsu T, Nagai M, Fukushima R, Shibutani M, Yamaguchi T, Uematsu Y, Shirota K, Mizutani T (2014) Existence of feline morbillivirus infection in Japanese cat populations. Arch Virol 159:371–373CrossRefPubMedGoogle Scholar
  15. 15.
    Park ES, Suzuki M, Kimura M, Maruyama K, Mizutani H, Saito R, Kubota N, Furuya T, Mizutani T, Imaoka K, Morikawa S (2014) Identification of a natural recombination in the F and H genes of feline morbillivirus. Virology 468:524–531CrossRefPubMedGoogle Scholar
  16. 16.
    Sakaguchi S, Nakagawa S, Yoshikawa R, Kuwahara C, Hagiwara H, Asai K, Kawakami K, Yamamoto Y, Ogawa M, Miyazawa T (2014) Genetic diversity of feline morbilliviruses isolated in Japan. J Gen Virol 95:1464–1468CrossRefPubMedGoogle Scholar
  17. 17.
    Lorusso A, Di Tommaso M, Di Felice E, Zaccaria G, Luciani A, Marcacci M, Aste G, Boari A, Savini G (2015) First report of feline morbillivirus in Europe. Vet Ital 51:235–237PubMedGoogle Scholar
  18. 18.
    Sieg M, Heenemann K, Rückner A, Burgener I, Oechtering G, Vahlenkamp TW (2015) Discovery of new feline paramyxoviruses in domestic cats with chronic kidney disease. Virus Genes 51:294–297CrossRefPubMedGoogle Scholar
  19. 19.
    Sharp CR, Nambulli S, Acciardo AS, Rennick LJ, Drexler JF, Rima BK, Williams T, Duprex WP (2016) Chronic infection of domestic cats with feline morbillivirus, United States. Emerg Infect Dis 22:760–762CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tong S, Chern SW, Li Y, Pallansch MA, Anderson LJ (2008) Sensitive and broadly reactive reverse transcription-PCR assays to detect novel paramyxoviruses. J Clin Microbiol 46:2652–2658CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lund EM, Armstrong PJ, Kirk CA, Kolar LM, Klausner JS (1999) Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. J Am Vet Med Assoc 214:1336–1341PubMedGoogle Scholar
  23. 23.
    Watson ADJ (2001) Indicators of renal insufficiency in dogs and cats presented at a veterinary teaching hospital. Aust Vet Pract 31:54–58Google Scholar
  24. 24.
    Poli A, Tozon N, Guidi G, Pistello M (2012) Renal alterations in Feline Immunodeficiency Virus (FIV)-infected cats: a natural model of Lentivirus-induced renal disease changes. Viruses 4:1372–1389CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Baxter KJ, Levy JK, Edinboro CH, Vaden SL, Tompkins MB (2012) Renal disease in cats infected with Feline Immunodeficiency Virus. J Vet Intern Med 26:238–243CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Gabriela Molinari Darold
    • 1
  • Amauri Alcindo Alfieri
    • 4
  • Lívia Saab Muraro
    • 2
  • Alexandre Mendes Amude
    • 3
  • Rosana Zanatta
    • 3
  • Kelly Cristiane Ito Yamauchi
    • 3
  • Alice Fernandes Alfieri
    • 4
  • Michele Lunardi
    • 1
  1. 1.Laboratories of Veterinary MicrobiologyUniversity of CuiabáCuiabáBrazil
  2. 2.Veterinary Clinical PathologyUniversity of CuiabáCuiabáBrazil
  3. 3.Department of Small Animal Medicine, Teaching Veterinary HospitalUniversity of CuiabáCuiabáBrazil
  4. 4.Laboratory of Animal Virology, Department of Veterinary Preventive MedicineUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations