Skip to main content
Log in

Lytic bacteriophage PM16 specific for Proteus mirabilis: a novel member of the genus Phikmvvirus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Lytic Proteus phage PM16, isolated from human faeces, is a novel virus that is specific for Proteus mirabilis cells. Bacteriophage PM16 is characterized by high stability, a short latency period, large burst size and the occurrence of low phage resistance. Phage PM16 was classified as a member of the genus Phikmvvirus on the basis of genome organization, gene synteny, and protein sequences similarities. Within the genus Phikmvvirus, phage PM16 is grouped with Vibrio phage VP93, Pantoea phage LIMElight, Acinetobacter phage Petty, Enterobacter phage phiKDA1, and KP34-like bacteriophages. An investigation of the phage-cell interaction demonstrated that phage PM16 attached to the cell surface, not to the bacterial flagella. The study of P. mirabilis mutant cells obtained during the phage-resistant bacterial cell assay that were resistant to phage PM16 re-infection revealed a non-swarming phenotype, changes in membrane characteristics, and the absence of flagella. Presumably, the resistance of non-swarming P. mirabilis cells to phage PM16 re-infection is determined by changes in membrane macromolecular composition and is associated with the absence of flagella and a non-swarming phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  2. Ackermann HW (2009) Phage classification and characterization. In: Clokie MRJ (ed), Kropinski AM (ed) Bacteriophages: methods and protocols, vol 1. Humana Press, New York, pp 127–140. doi:10.1007/978-1-60327-164-613

  3. Adriaenssens EM, Ceyssens PJ, Dunon V, Ackermann HW, Van Vaerenbergh J et al (2011) Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, belonging to the “phiKMV-like viruses”. Appl Environ Microbiol 77:3443–3450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Armbruster CE, Mobley HLT (2012) Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 10:743–754. doi:10.1038/nrmicro2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bacteriophage λ and its vectors (2001) In: Sambrook J, Russell D (eds) Molecular cloning. vol. 1. Cold Spring Harbour Laboratory Press, pp 187–303

  6. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  7. Bastías R, Higuera G, Sierralta W, Espejo RT (2010) A new group of cosmopolitan bacteriophages induce a carrier state in the pandemic strain of Vibrio parahaemolyticus. Environ Microbiol 12(4):990–1000

    Article  PubMed  Google Scholar 

  8. Belas R, Suvanasuthi R (2005) The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. J Bacteriol 187(19):6789–6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Briers Y, Peeters LM, Volckaert G, Lavigne R (2011) The lysis cassette of bacteriophage ϕKMV encodes a signal-arrest-release endolysin and a pinholin. Bacteriophage 1:25–30

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carson L, Gorman SP, Gilmore BF (2010) The use of lytic bacteriophages in the prevention and eradication of biofilms of Proteus mirabilis and Escherichia coli. FEMS Immunol Med Microbiol 59:447–455

    Article  CAS  PubMed  Google Scholar 

  11. Ceyssens PJ, Lavigne R, Mattheus W, Chibeu A, Hertveldt K et al (2006) Genome analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: establishment of the phiKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ceyssens PJ, Glonti T, Kropinski NM, Lavigne R, Chanishvili N et al (2011) Phenotypic and genotypic variations within a single bacteriophage species. Virol J 8:134

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chong Y, Shimoda S, Yakushiji H, Ito Y, Miyamoto T, Kamimura T, Shimono N, Akashi KJ (2013) Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. J Med Microbiol 62(Pt 7):1038–1043. doi:10.1099/jmm.0.059279-0

    Article  PubMed  Google Scholar 

  14. Chung IY, Sim N, Cho YH (2012) Antibacterial efficacy of temperate phage-mediated inhibition of bacterial group motilities. Antimicrob Agents Chemother 56(11):5612–5617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Vecchi E, Sitia S, Romanò CL, Ricci C, Mattina R, Drago L (2013) Aetiology and antibiotic resistance patterns of urinary tract infections in the elderly: a 6-month study. J Med Microbiol 62(Pt 6):859–863. doi:10.1099/jmm.0.056945-0

    Article  PubMed  Google Scholar 

  16. Drulis-Kawa Z, Mackiewicz P, Kęsik-Szeloch A, Maciaszczyk-Dziubinska E, Weber-Dąbrowska B et al (2011) Isolation and characterisation of KP34—a novel phiKMV-like bacteriophage for Klebsiella pneumoniae. Appl Microbiol Biotechnol 90:1333–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eriksson H, Maciejewska B, Latka A, Majkowska-Skrobek G, Hellstrand M, Melefors Ö, Wang JT, Kropinski AM, Drulis-Kawa Z, Nilsson AS (2015) A suggested new bacteriophage genus, “Kp34likevirus”, within the Autographivirinae subfamily of Podoviridae. Viruses 7(4):1804–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frickey T, Lupas AN (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20:3702–3704

    Article  CAS  PubMed  Google Scholar 

  19. Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313:1003–1011

    Article  CAS  PubMed  Google Scholar 

  20. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  21. Jones P, Binns D, Chang H-Yu, Fraser M, Li W, McAnulla C, McWilliam H et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics. doi:10.1093/bioinformatics/btu031

    Google Scholar 

  22. Heo YJ, Lee YuR, Jung HH, Lee J, Ko G, Cho YH (2009) Antibacterial Efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob Agents Chemother 53(6):2469–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hickman FW, Farmer JJ 3rd (1976) Differentiation of Proteus mirabilis by bacteriophage typing and the Dienes reaction. J Clin Microbiol 3(3):350–358

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hola V, Peroutkova T, Ruzicka F (2012) Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections. FEMS Immunol Med Microbiol 65:343–349

    Article  CAS  PubMed  Google Scholar 

  25. Kassavetis GA, Chamberlin MJ (1979) Mapping of class II promoter sites utilized in vitro by T7-specific RNA polymerase on bacteriophage T7 DNA. J Virol 29(1):196–208

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols. Humana Press, New York, pp 69–76

    Chapter  Google Scholar 

  28. Kropinski AM (2009) Measurement of the rate of attachment of bacteriophage to cells. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols. Humana Press, New York, pp 151–155

    Chapter  Google Scholar 

  29. Kutter E (2009) Phage host range and efficiency of plating. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols. Humana Press, New York, pp 141–149

    Chapter  Google Scholar 

  30. Lammens E, Ceyssens PJ, Voet M, Hertveldt K, Lavigne R, Volckaert G (2009) Representational difference analysis (RDA) of bacteriophage genomes. J Microbiol Methods 77(2):207–213

    Article  CAS  PubMed  Google Scholar 

  31. Lavigne R, Burkal’tseva MV, Robben J, Sykilinda NN, Kurochkina LP et al (2003) The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology 312:49–59

    Article  CAS  PubMed  Google Scholar 

  32. Lavigne R, Sun WD, Volckaert G (2004) PHIRE, a deterministic approach to reveal regulatory elements in bacteriophage genomes. Bioinformatics 20:629–635

    Article  CAS  PubMed  Google Scholar 

  33. Lu G, Moriyama EN (2004) Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5:378–388

    Article  CAS  PubMed  Google Scholar 

  34. Macke TJ, Ecker DJ, Gutell RR, Gautheret D, Case DA, Sampath R (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res 29:4724–4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manos J, Belas R (2006) The genera Proteus, Providencia, and Morganella. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes. Springer, Berlin, pp 245–260

    Google Scholar 

  36. Mansy MS, Fadl AA, Ashour MS, Khan MI (1999) Amplification of Proteus mirabilis chromosomal DNA using the polymerase chain reaction. Mol Cell Probes 13:133–140

    Article  CAS  PubMed  Google Scholar 

  37. Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages using the small drop plaque assay system. In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols. Humana Press, New York, pp 81–85

    Chapter  Google Scholar 

  38. McCallin S, Alam Sarker S, Barretto C, Sultana S, Berger B, Huq S, Krause L, Bibiloni R, Schmitt B, Reuteler G, Brüssow H (2013) Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 443(2):187–196. doi:10.1016/j.virol.2013.05.022

    Article  CAS  PubMed  Google Scholar 

  39. Merabishvili M, Vandenheuvel D, Kropinski AM, Mast J, De Vos D, Verbeken G, Noben JP, Lavigne R, Vaneechoutte M, Pirnay JP (2014) Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii. PLoS One 9(8):e104853. doi:10.1371/journal.pone.0104853

    Article  PubMed  PubMed Central  Google Scholar 

  40. Międzybrodzki R, Borysowski J, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Szufnarowski K, Pawełczyk Z, Rogóż P, Kłak M, Wojtasik E, Górski A (2012) Clinical aspects of phage therapy. Adv Virus Res 83:73–121. doi:10.1016/B978-0-12-394438-2.00003-7

    Article  PubMed  Google Scholar 

  41. Morgenstein RM, Szostek B, Rather PN (2010) Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol Rev 34(5):753–763. doi:10.1111/j.1574-6976.2010.00229.x

    Article  CAS  PubMed  Google Scholar 

  42. O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: a new lineage of Myoviridae infecting gram-positive bacteria with a low GC content. J Bacteriol 186:2862–2871

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pajunen M, Kiljunen S, Skurnik M (2000) Bacteriophage phiYeO3-12, specific for Yersinia enterocolitica serotype O:3, is related to coliphages T3 and T7. J Bacteriol 182(18):5114–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pearson MM, Sebaihia M, Churcher C, Quail MA, Seshasayee AS et al (2008) Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol 190:4027–4037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rather PN (2005) Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol 7(8):1065–1073. doi:10.1111/j.1462-2920.2005.00806.x

    Article  CAS  PubMed  Google Scholar 

  46. Remmert M, Biegert A, Hauser A, Söding J (2011) HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9(2):173–175. doi:10.1038/nmeth.1818

    Article  PubMed  Google Scholar 

  47. Roucourt B, Lavigne R (2009) The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ Microbiol 11:2789–2805

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt WC, Jeffries CD (1974) Bacteriophage typing of Proteus mirabilis, Proteus vulgaris, and Proteus morganii. Appl Microbiol 27(1):47–53

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sekaninová G, Hofer M, Rychlík I, Pillich J, Kolárová M et al (1994) A new phage typing scheme for Proteus mirabilis and Proteus vulgaris strains. Morphological analysis. Folia Microbiol 39:381–386

    Article  Google Scholar 

  50. Sekaninová G, Rychlík I, Kolárová M, Pillich J, Seménka J et al (1998) A new bacteriophage typing scheme for Proteus mirabilis and Proteus vulgaris strains. Analysis of lytic properties. Folia Microbiol 43:136–140

    Article  Google Scholar 

  51. Shevchenko A, Jensen ON, Podtelejnikov AV, Sagliocco F, Wilm M, Vorm O, Mortensen P, Shevchenko A, Boucherie H, Mann M (1996) Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc Natl Acad Sci 93(25):14440–14445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siebor E, Neuwirth C (2013) Emergence of Salmonella genomic island 1 (SGI1) among Proteus mirabilis clinical isolates in Dijon, France. J Antimicrob Chemother 68(8):1750–1756. doi:10.1093/jac/dkt100

    Article  CAS  PubMed  Google Scholar 

  53. Thiede B, Höhenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR (2005) Peptide mass fingerprinting. Methods 35(3):237–247

    Article  CAS  PubMed  Google Scholar 

  54. Tippmann HF (2004) Analysis for free: comparing programs for sequence analysis. Brief Bioinform 5(1):82–87

    Article  CAS  PubMed  Google Scholar 

  55. Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10):e7401. doi:10.1371/journal.pone.0007401

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, O’Toole GA (2009) Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J Bacteriol 191(1):210–219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding: This research was financially supported by the Program of Presidium of the Russian Academy of Sciences “Basic researches for development of medical technologies” (Grant No. 2014-155) and by Ministry of Education and Science of the Russian Federation (Grant No. VI.55.1.1 “Genomics of bacterial and viral communities”).

The authors wish to thank I.V. Saranina, G.B. Kaverina and E.P. Panferova for excellent technical support. They also thank doctors V.V. Anishenko and S.A. Semenov from Railway Clinical Hospital (Novosibirsk, Russia) for providing clinical samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Morozova.

Ethics declarations

Conflict of interest

All authors have seen and agree with the contents of the manuscript, and there is no financial interest to report. All co-authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The research was approved by the Local Ethical Committee of the Center of New Medical Technology, Novosibirsk and informed consent from the patient was obtained.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 161 kb)

Supplementary material 2 (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, V., Kozlova, Y., Shedko, E. et al. Lytic bacteriophage PM16 specific for Proteus mirabilis: a novel member of the genus Phikmvvirus . Arch Virol 161, 2457–2472 (2016). https://doi.org/10.1007/s00705-016-2944-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2944-2

Keywords

Navigation