Skip to main content

Advertisement

Log in

Polyhydroxylated sulfated steroids derived from 5α-cholestanes as antiviral agents against herpes simplex virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Twelve polyhydroxylated sulfated steroids synthesized from a 5α-cholestane skeleton with different substitutions in C-2, C-3 and C-6 were evaluated for cytotoxicity and antiviral activity against herpes simplex virus (HSV) by a virus plaque reduction assay. Four compounds elicited a selective inhibitory effect against HSV. The disodium salt of 2β,3α-dihydroxy-6E-hydroximine-5α-cholestane-2,3-disulfate, named compound 7, was the most effective inhibitor of HSV-1, HSV-2 and pseudorabies virus (PrV) strains, including acyclovir-resistant variants, in human and monkey cell lines. Preliminary mechanistic studies demonstrated that compound 7 did not affect the initial steps of virus entry but inhibited a subsequent event in the infection process of HSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Vo T-S, Ngo D-H, Ta QV, Kim S-K (2011) Marine organisms as a therapeutic source against herpes simplex virus infection. Eur J Pharm Sci 44:11–20

    Article  CAS  PubMed  Google Scholar 

  2. Cheung RCF, Wong JH, Pan WL, Chan YS, Yin CM, Dan XL, Wang HX, Fang EF, Lam SK, Ngai PHK, Xia LX, Liu F, Ye XY, Zhang GQ, Liu QH, Sha O, Lin P, Ki C, Bekhit AA, Bekhit AE, Wan DCC, Ye XJ, Xia J, Ng TB (2014) Antifungal and antiviral products of marine organisms. Appl Microbiol Biotechnol 98:3475–3494

    Article  CAS  PubMed  Google Scholar 

  3. Newman DJ, Cragg GM (2014) Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 12:255–278

    Article  PubMed  PubMed Central  Google Scholar 

  4. García M, Monzote L (2014) Marine products with anti-protozoal activity: a review. Curr Clin Pharmacol 9:258–270

    Article  PubMed  Google Scholar 

  5. Dang VT, Benkendorff K, Green T, Speck P (2015) Marine snails and slugs: a great place to look for antiviral drugs. J Virol 89:8114–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yasuhara-Bell J, Lu Y (2010) Marine compounds and their antiviral activities. Antiviral Res 86:231–240. doi:10.1016/j.antiviral.2010.03.009

    Article  CAS  PubMed  Google Scholar 

  7. Megens S, Laethem KV (2013) HIV-1 genetic variation and drug resistance development. Expert Rev Anti Infect Ther 11:1159–1178

    Article  CAS  PubMed  Google Scholar 

  8. Andrei G, Snoeck R (2013) Herpes simplex virus drug-resistance: new mutations and insights. Curr Opin Infect Dis 26:551–560

    Article  CAS  PubMed  Google Scholar 

  9. Komatsu TE, Pikis A, Naeger LK, Harrington PR (2014) Resistance of human cytomegalovirus to ganciclovir/valganciclovir: a comprehensive review of putative resistance pathways. Antiviral Res 101:12–25

    Article  CAS  PubMed  Google Scholar 

  10. Rudi A, Yosief T, Loya S, Hizi A, Schleyer M, Kashman Y (2001) Clathsterol, a novel anti-HIV-1 RT sulfated sterol from the sponge Clathria species. J Nat Prod 64:1451–1453

    Article  CAS  PubMed  Google Scholar 

  11. Peng Y, Zheng J, Huang R, Wang Y, Xu T, Zhou X, Liu Q, Zeng F, Ju H, Yang X, Liu Y (2010) Polyhydroxy steroids and saponins from China sea starfish Asterina pectinifera and their biological activities. Chem Pharm Bull 58:856–858

    Article  CAS  PubMed  Google Scholar 

  12. Gong KK, Tang XL, Zhang G, Cheng CL, Zhang XW, Li PL, Li GQ (2013) Polyhydroxylated steroids from the South China Sea soft coral Sarcophyton sp. and their cytotoxic and antiviral activities. Mar Drugs 11:4788–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim SK, Himaya SW (2012) Triterpene glycosides from sea cucumbers and their biological activities. Adv Food Nutr Res 65:297–319

    Article  PubMed  Google Scholar 

  14. Guimaraes TR, Quiroz CG, Rigotto C, Oliveira SQ, Almeida MTR, Bianco EM, Moritz MIG, Carraro JL, Palermo JA, Cabrera G, Schenkel EP, Reginatto FH, Simoes CMO (2013) Anti-HSV-1 activity of halistanol sulfate and halistanol sulfate C isolated from Brazilian marine sponge Petromica citrina (Demospongiae). Mar Drugs 11:4176–4192

    Article  Google Scholar 

  15. Whitley RJ, Roizman B (2009) Herpes simplex viruses. In: Richmann DD, Whitley RJ, Hayden FG (eds) Clinical Virology, 3rd edn. ASM Press, Washington, pp 409–436

    Google Scholar 

  16. Brady RC, Bernstein DI (2004) Treatment of herpes simplex virus infections. Antiviral Res 61:73–81

    Article  CAS  PubMed  Google Scholar 

  17. Piret J, Boivin G (2011) Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence and management. Antimicrob Agents Chemother 55:459–472

    Article  CAS  PubMed  Google Scholar 

  18. Comin MJ, Maier MS, Roccatagliata AJ, Pujol CA, Damonte EB (1999) Evaluation of the antiviral activity of natural sulfated polyhydroxysteroids and their synthetic derivatives and analogs. Steroids 64:335–340

    Article  CAS  PubMed  Google Scholar 

  19. Maier MS, Roccatagliata AJ, Kuriss A, Chludil H, Seldes AM, Pujol CA, Damonte EB (2001) Two new cytotoxic and virucidal trisulfated triterpen glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. J Nat Prod 64:732–736

    Article  CAS  PubMed  Google Scholar 

  20. Garrido Santos GA, Murray AP, Pujol CA, Damonte EB, Maier MS (2003) Synthesis and antiviral activity of sulfated and acetylated derivatives of 2β,3α-dihydroxy-5α-cholestane. Steroids 68:125–132

    Article  Google Scholar 

  21. Richmond V, Garrido Santos G, Murray AP, Maier MS (2011) Synthesis and acetylcholinesterase inhibitory activity of 2β,3α-disulfoxy-5α-cholestan-6-one. Steroids 76:1160–1165

    Article  CAS  PubMed  Google Scholar 

  22. Richmond V, Murray AP, Maier MS (2013) Synthesis and acetylcholinesterase inhibitory activity of polyhydroxylated sulfated steroids: Structure/activity studies. Steroids 78:1141–1147

    Article  CAS  PubMed  Google Scholar 

  23. Richmond V, Careaga VP, Sacca P, Calvo JC, Maier MS (2014) Synthesis and cytotoxic evaluation of four new 6E-hydroximinosteroids. Steroids 84:7–10

    Article  CAS  PubMed  Google Scholar 

  24. Müller T, Hahn EC, Tottewitz F, Kramer M, Klupp BG, Mettenleiter TC, Freuling C (2011) Pseudorabies virus in wild swine: a global perspective. Arch Virol 156:1691–1705

    Article  PubMed  Google Scholar 

  25. Carlucci MJ, Ciancia M, Matulewicz MC, Cerezo AS, Damonte EB (1999) Antiherpetic activity and mode of action of natural carrageenans of diverse structural types. Antiviral Res 43:93–102

    Article  CAS  PubMed  Google Scholar 

  26. García CC, Sepúlveda CS, Damonte EB (2011) Novel therapeutic targets for arenavirus hemorrhagic fevers. Future Virol 6:27–44

    Article  Google Scholar 

  27. Guzmán MG, Harris E (2015) Dengue. Lancet 385:453–465

    Article  PubMed  Google Scholar 

  28. Mandal P, Mateu CG, Chattopadhyay K, Pujol CA, Damonte EB, Ray B (2007) Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antiviral Chem Chemother 18:153–162

    Article  CAS  Google Scholar 

  29. Damonte EB, Matulewicz MC, Cerezo AS (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr Med Chem 11:2399–2418

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Wang S-X, Guan HS (2012) The antiviral activities and mechanisms of marine polysaccharides: an overview. Mar Drugs 10:2705–2816

    Google Scholar 

  31. Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B (2009) Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology 19:2–15

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa B. Damonte.

Ethics declarations

Funding

This work was funded by grants from Agencia Nacional para la Promoción Científica y Tecnológica (ANPCyT, grant number 0506), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, grant number 11220090100071), and Universidad de Buenos Aires (grant numbers 00448 and 00404), Argentina. CSS, MSM and EBD are Research Members of CONICET.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2016_2867_MOESM1_ESM.tif

Supplementary Fig. 1 Dose-dependent plaque reduction of HSV-1 after treatment with compound 7. Vero cells were infected with HSV-1 strain F in the absence (VC: virus control) or presence of the indicated concentrations (µg/ml) of compound 7. Plaques were revealed after 48 h of incubation at 37 °C. (TIFF 3475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pujol, C.A., Sepúlveda, C.S., Richmond, V. et al. Polyhydroxylated sulfated steroids derived from 5α-cholestanes as antiviral agents against herpes simplex virus. Arch Virol 161, 1993–1999 (2016). https://doi.org/10.1007/s00705-016-2867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2867-y

Keywords

Navigation