Skip to main content

Advertisement

Log in

Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The process of feline immunodeficiency virus (FIV) entry into its target cells is initiated by the association of the surface (SU) subunit of the viral envelope glycoprotein (Env) with the cellular receptors CD134 and CXCR4. This event is followed by the fusion of the viral and cellular membranes, which is mediated by the transmembrane (TM) subunit of Env. We and others have previously demonstrated that the V3 domain of the SU subunit of Env is essential for CXCR4 binding. Of note, there are two contiguous and highly conserved potential N-glycosylation sites (418NST420 and 422NLT424) located at the C-terminal side of the V3 domain. We therefore decided to study the relevance for Env functions of these N-glycosylation motifs and found that disruption of both of them by introducing the N418Q/N422Q double amino acid substitution drastically impairs Env processing into the SU and TM subunits. Moreover, the simultaneous mutation of these N-glycosylation sites prevents Env incorporation into virions and Env-mediated cell-to-cell fusion. Notably, a recombinant soluble version of the SU glycoprotein carrying the double amino acid replacement N418Q/N422Q at the V3 C-terminal side binds to CXCR4 with an efficiency similar to that of wild-type SU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pedersen NC, Ho EW, Brown ML, Yamamoto JK (1987) Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793

    Article  CAS  PubMed  Google Scholar 

  2. Affranchino JL, González SA (2014) Understanding the process of envelope glycoprotein incorporation into virions in simian and feline immunodeficiency viruses. Viruses 6:264–283

    Article  PubMed  PubMed Central  Google Scholar 

  3. Verschoor EJ, Hulskotte EGJ, Ederveen J, Koolen MJM, Horzinek MC, Rottier PJM (1993) Post-translational processing of the feline immunodeficiency virus envelope precursor protein. Virology 193:433–438

    Article  CAS  PubMed  Google Scholar 

  4. de Parseval A, Chatterji U, Sun P, Elder JH (2004) Feline immunodeficiency virus targets activated CD4+ T cells by using CD134 as a binding receptor. Proc Natl Acad Sci USA 101:13044–13049

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shimojima M, Miyasawa T, Ikeda Y, McMonagle EL, Haining H, Akashi H, Takeuchi Y, Hosie MJ, Willett BJ (2004) Use of CD134 as a primary receptor by the feline immunodeficiency virus. Science 303:1192–1195

    Article  CAS  PubMed  Google Scholar 

  6. Poeschla EM, Looney DJ (1988) CXCR4 is required by a nonprimate lentivirus: heterologous expression of feline immunodeficiency virus in human, rodent, and feline cells. J Virol 72:6858–6866

    Google Scholar 

  7. Willett BJ, Picard L, Hosie MJ, Turner JD, Adema K, Clapham PR (1997) Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. J Virol 71:6407–6415

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Celma CCP, Paladino MG, González SA, Affranchino JL (2007) Importance of the short cytoplasmic domain of feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions. Virology 366:405–414

    Article  CAS  PubMed  Google Scholar 

  9. Garg H, Fuller FJ, Tompkins WAF (2004) Mechanism of feline immunodeficiency virus envelope glycoprotein-mediated fusion. Virology 321:274–286

    Article  CAS  PubMed  Google Scholar 

  10. González SA, Paladino MG, Affranchino JL (2012) Palmitoylation of the feline immunodeficiency virus envelope glycoprotein and its effect on fusion activity and envelope incorporation into virions. Virology 428:1–10

    Article  PubMed  Google Scholar 

  11. Brown WC, Bissey L, Logan KS, Pedersen NC, Elder JH, Collisson EW (1991) Feline immunodeficiency virus infects both CD4+ and CD8+ T lymphocytes. J Virol 65:3359–3364

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Brunner D, Pedersen NC (1989) Infection of peritoneal macrophages in vitro and in vivo with feline immunodeficiency virus. J Virol 63:5483–5488

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dean GA, Himathongkham S, Sparger EE (1999) Differential cell tropism of feline immunodeficiency virus molecular clones in vivo. J Virol 73:2596–2603

    CAS  PubMed  PubMed Central  Google Scholar 

  14. English RV, Johnson CM, Gebhard DH, Tompkins MB (1993) In vivo lymphocyte tropism of feline immunodeficiency virus. J Virol 67:5175–5186

    CAS  PubMed  PubMed Central  Google Scholar 

  15. de Parseval A, Ngo S, Sun P, Elder JH (2004) Factors that increase the effective concentration of CXCR4 dictate feline immunodeficiency virus tropism and kinetics of replication. J Virol 78:9132–9143

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kraase M, Sloan R, Klein D, Logan N, McMonagle L, Biek R, Willett BJ, Hosie MJ (2010) Feline immunodeficiency virus env gene evolution in experimentally infected cats. Vet Immunol Immunopathol 134:96–106

    Article  CAS  PubMed  Google Scholar 

  17. González SA, Falcón JI, Affranchino JL (2014) Replacement of the V3 domain in the surface subunit of the feline immunodeficiency virus envelope glycoprotein with the equivalent region of a T cell-tropic human immunodeficiency virus type 1 results in a chimeric surface protein that efficiently binds to CXCR4. AIDS Res Hum Retroviruses 30:250–259

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hu QY, Fink E, Hong Y, Wang C, Grant CK, Elder JH (2010) Fine definition of the CXCR4-binding region on the V3 loop of feline immunodeficiency virus surface glycoprotein. PLoS One 5:e10689

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sundstrom M, White RL, de Parseval A, Sastry KJ, Morris G, Grant CK, Elder JH (2008) Mapping of the CXCR4 binding site within variable region 3 of the feline immunodeficiency virus surface glycoprotein. J Virol 82:9134–9142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pancino G, Fossati I, Chappey C, Castelot S, Hurtrel B, Moraillon A, Klatzmann D, Sonigo P (1993) Structure and variations of feline immunodeficiency virus envelope glycoproteins. Virology 192:659–662

    Article  CAS  PubMed  Google Scholar 

  21. Walker BD, Kowalski M, Goh WC, Kozarsky K, Krieger M, Rosen C, Rohrschneider L, Haseltine WA, Sodroski J (1987) Inhibition of human immunodeficiency virus syncytium formation and virus replication by castanospermine. Proc Natl Acad Sci USA 84:8120–8124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stansell E, Desrosiers RC (2010) Functional contributions of carbohydrate on AIDS virus glycoprotein. Yale J Biol Med 83:201–208

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM (2003) Antibody neutralization and escape by HIV-1. Nature 422:307–312

    Article  CAS  PubMed  Google Scholar 

  24. François KO, Balzarini J (2011) The highly conserved glycan at asparagine 260 of HIV-1 gp120 is indispensable for viral entry. J Biol Chem 286:42900–42910

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang X, Jin W, Hu K, Luo S, Du T, Griffin GE, Shattock RJ, Hu Q (2012) Highly conserved HIV-1 gp120 glycans proximal to CD4-binding region affect viral infectivity and neutralizing antibody induction. Virology 423:97–106

    Article  CAS  PubMed  Google Scholar 

  26. Kalinina OV, Pfeifer N, Lengauer T (2013) Modelling binding between CCR5 and CXCR4 receptors and their ligands suggests the surface electrostatic potential of the co-receptor to be a key player in the HIV-1 tropism. Retrovirology 10:130

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfield RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olmsted RA, Barnes AK, Yamamoto JK, Hirsch VM, Purcell RH, Johnson PR (1989) Molecular cloning of feline immunodeficiency virus. Proc Natl Acad Sci USA 86:2448–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Manrique JM, Celma CCP, Hunter E, Affranchino JL, González SA (2003) Positive and negative modulation of virus infectivity and envelope glycoprotein incorporation into virions by amino acid substitutions at the N-terminus of the simian immunodeficiency virus matrix protein. J Virol 77:10881–10888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rauddi ML, Mac Donald CL, Affranchino JL, González SA (2011) Mapping of the self-interaction domains in the simian immunodeficiency virus Gag polyprotein. AIDS Res Hum Retroviruses 27:303–316

    Article  CAS  PubMed  Google Scholar 

  31. Fuerst TR, Earl PL, Moss B (1987) Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol Cell Biol 7:2538–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Affranchino JL, González SA (2006) Mutations at the C-terminus of the simian immunodeficiency virus envelope glycoprotein affect gp120-gp41 stability on virions. Virology 347:217–225

    Article  CAS  PubMed  Google Scholar 

  33. Kimpton J, Emerman E (1992) Detection of replication competent and pseudotyped human immunodeficiency virus with a sensitive cell line on the basis of activation of an integrated β-galactosidase gene. J Virol 66:2232–2239

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Cristina C. P. Celma for generating the anti-FIV TM sera and Edward Hoover for providing the pooled sera from FIV-infected cats. S. A. G. and J. L. A. are career investigators of the National Research Council of Argentina (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Affranchino.

Ethics declarations

Funding

This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina) Grant 641 to J. L. A.

Conflict of interest

Both authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, S.A., Affranchino, J.L. Processing, fusogenicity, virion incorporation and CXCR4-binding activity of a feline immunodeficiency virus envelope glycoprotein lacking the two conserved N-glycosylation sites at the C-terminus of the V3 domain. Arch Virol 161, 1761–1768 (2016). https://doi.org/10.1007/s00705-016-2843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2843-6

Keywords

Navigation