Skip to main content

Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa

Abstract

Pigs harbor a variety of viruses that are closely related to human viruses and are suspected to have zoonotic potential. Little is known about the presence of viruses in smallholder farms where pigs are in close contact with humans and wildlife. This study provides insight into viral communities and the prevalence and characteristics of enteric viral co-infections in smallholder pigs in East Africa. Sequence-independent amplification and high-throughput sequencing were applied to the metagenomics analysis of viruses in feces collected from asymptomatic pigs. A total of 47,213 de novo-assembled contigs were constructed and compared with sequences from the GenBank database. Blastx search results revealed that 1039 contigs (>200 nt) were related to viral sequences in the GenBank database. Of the 1039 contigs, 612 were not assigned to any viral taxa because they had little similarity to known viral genomic or protein sequences, while 427 contigs had a high level of sequence similarity to known viruses and were assigned to viral taxa. The most frequent contigs related to mammalian viruses resembling members of the viral genera Astrovirus, Rotavirus, Bocavirus, Circovirus, and Kobuvirus. Other less abundant contigs were related to members of the genera Sapelovirus, Pasivirus, Posavirus, Teschovirus and Picobirnavirus. This is the first report on the diversity of the fecal virome of pig populations in East Africa. The findings of the present study help to elucidate the etiology of diarrheal diseases in pigs and identify potential zoonotic and emerging viruses in the region. Further investigations are required to compare the incidence of these viruses in healthy and diseased pigs in order to better elucidate their pathogenic role.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Koopmans M, Duizer E (2004) Foodborne viruses: an emerging problem. Int J Food Microbiol 90(1):23–41

    Article  PubMed  Google Scholar 

  2. Dorjee S, Poljak Z, Revie CW, Bridgland J, McNab B, Leger E, Sanchez J (2013) A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations. Zoonoses Public Health 60(6):383–411

    Article  CAS  PubMed  Google Scholar 

  3. Milne-Price S, Miazgowicz KL, Munster VJ (2014) The emergence of the Middle East respiratory syndrome coronavirus. Pathog Dis 71(2):121–136

    Article  PubMed  Google Scholar 

  4. Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JSM, Guan Y, Rambaut A (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459(7250):1122–1125

    Article  CAS  PubMed  Google Scholar 

  5. Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Chen QX, Gao YW, Zhou HQ, Xiang H, Zheng HJ, Chern SW, Cheng F, Pan CM, Xuan H, Chen SJ, Luo HM, Zhou DH, Liu YF, He JF, Qin PZ, Li LH, Ren YQ, Liang WJ, Yu YD, Anderson L, Wang M, Xu RH, Wu XW, Zheng HY, Chen JD, Liang G, Gao Y, Liao M, Fang L, Jiang LY, Li H, Chen F, Di B, He LJ, Lin JY, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu XJ, Spiga O, Guo ZM, Pan HY, He WZ, Manuguerra JC, Fontanet A, Danchin A, Niccolai N, Li YX, Wu CI, Zhao GP (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 102(7):2430–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D, Karesh WB, Zambrana-Torrelio C, Lipkin WI, Daszak P (2012) Prediction and prevention of the next pandemic zoonosis. Lancet 380(9857):1956–1965

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blomstrom AL, Stahl K, Masembe C, Okoth E, Okurut AR, Atmnedi P, Kemp S, Bishop R, Belak S, Berg M (2012) Viral metagenomic analysis of bushpigs (Potamochoerus larvatus) in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2. Virol J 9:192

    Article  PubMed  PubMed Central  Google Scholar 

  8. Masembe C, Michuki G, Onyango M, Rumberia C, Norling M, Bishop RP, Djikeng A, Kemp SJ, Orth A, Skilton RA, Stahl K, Fischer A (2012) Viral metagenomics demonstrates that domestic pigs are a potential reservoir for Ndumu virus. Virol J 9(218):218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mihalov-Kovács E, Feher E, Martella V, Banyai K, Farkas SL (2014) The fecal virome of domesticated animals. Virusdisease 25(2):150–157

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E (2011) The fecal virome of pigs on a high-density farm. J Virol 85(22):11697–11708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woo PCY, Lau SKP, Teng JLL, Tsang AKL, Joseph M, Wong EYM, Tang Y, Sivakumar S, Bai R, Wernery R (2014) Metagenomic analysis of viromes of dromedary camel fecal samples reveals large number and high diversity of circoviruses and picobirnaviruses. Virol 471:117–125

    Article  Google Scholar 

  12. J-m Yu, J-s Li, Y-y Ao, Z-j Duan (2013) Detection of novel viruses in porcine fecal samples from China. Virol J 10:39

    Article  Google Scholar 

  13. Delwart EL (2007) Viral metagenomics. Rev Med Virol 17(2):115–131

    Article  CAS  PubMed  Google Scholar 

  14. Mokili JL, Rohwer F, Dutilh BE (2012) Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2(1):63–77

    Article  CAS  PubMed  Google Scholar 

  15. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99(22):14250–14255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL, Delwart EL (2011) The fecal viral flora of wild rodents. PLoS Pathog 7(9):e1002218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smits SL, Raj VS, Oduber MD, Schapendonk CM, Bodewes R, Provacia L, Stittelaar KJ, Osterhaus AD, Haagmans BL (2013) Metagenomic analysis of the ferret fecal viral flora. PLoS One 8(8):e71595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Victoria JG, Kapoor A, Li L, Blinkova O, Slikas B, Wang C, Naeem A, Zaidi S, Delwart E (2009) Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol 83(9):4642–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L, Shan T, Wang C, Cote C, Kolman J, Onions D, Gulland FM, Delwart E (2011) The fecal viral flora of California sea lions. J Virol 85(19):9909–9917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blomstrom AL, Belak S, Fossum C, McKillen J, Allan G, Wallgren P, Berg M (2009) Detection of a novel porcine boca-like virus in the background of porcine circovirus type 2 induced postweaning multisystemic wasting syndrome. Virus Res 146(1–2):125–129

    Article  PubMed  Google Scholar 

  21. Brink M, Stahl K, Masembe C, Okurut AR, Berg M, Blomstrom AL (2012) First time molecular detection and phylogenetic relationships of torque teno sus virus 1 and 2 in domestic pigs in Uganda: further evidence for a global distribution. Virol J 9:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  PubMed  Google Scholar 

  23. Roux S, Tournayre J, Mahul A, Debroas D, Enault F (2014) Metavir 2: new tools for viral metagenome comparison and assembled virome analysis. BMC Bioinform 15(1):76

    Article  Google Scholar 

  24. Li L, Victoria JG, Wang C, Jones M, Fellers GM, Kunz TH, Delwart E (2010) Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol 84(14):6955–6965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Q, Hu R, Tang X, Wu C, He Q, Zhao Z, Chen H, Wu B (2013) Occurrence and investigation of enteric viral infections in pigs with diarrhea in China. Arch Virol 158(8):1631–1636

    Article  CAS  PubMed  Google Scholar 

  26. Moser LA, Schultz-Cherry S (2005) Pathogenesis of astrovirus infection. Viral immunol 18:4–10

    Article  CAS  PubMed  Google Scholar 

  27. Quan P-L, Wagner TA, Briese T, Torgerson TR, Hornig M, Tashmukhamedova A, Firth C, Palacios GF, Baisre-de Leon A, Paddock CD (2010) Astrovirus encephalitis in boy with X-linked agammaglobulinemia. Emerg Infect Dis 17(6):918–925

    Article  Google Scholar 

  28. Rivera R, Nollens HH, Venn-Watson S, Gulland FM, Wellehan JF Jr (2010) Characterization of phylogenetically diverse astroviruses of marine mammals. J Gen Virol 91(Pt 1):166–173

    Article  CAS  PubMed  Google Scholar 

  29. Toffan A, Jonassen CM, De Battisti C, Schiavon E, Kofstad T, Capua I, Cattoli G (2009) Genetic characterization of a new astrovirus detected in dogs suffering from diarrhoea. Vet Microbiol 139(1–2):147–152

    Article  CAS  PubMed  Google Scholar 

  30. Zhu HC, Chu DK, Liu W, Dong BQ, Zhang SY, Zhang JX, Li LF, Vijaykrishna D, Smith GJ, Chen HL, Poon LL, Peiris JS, Guan Y (2009) Detection of diverse astroviruses from bats in China. J Gen Virol 90(Pt 4):883–887

    Article  CAS  PubMed  Google Scholar 

  31. Amimo JO, Okoth E, Junga JO, Ogara WO, Njahira MN, Wang Q, Vlasova AN, Saif LJ, Djikeng A (2014) Molecular detection and genetic characterization of kobuviruses and astroviruses in asymptomatic local pigs in East Africa. Arch Virol 159(6):1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo Z, Roi S, Dastor M, Gallice E, Laurin M-A, L’homme Y (2010) Multiple novel and prevalent astroviruses in pigs. Vet Microbiol 149:316–323

    Article  PubMed  Google Scholar 

  33. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 102(36):12891–12896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Manteufel J, Truyen U (2008) Animal bocaviruses: a brief review. Intervirology 51(5):328–334

    Article  CAS  PubMed  Google Scholar 

  35. W-x Cheng, J-s Li, C-p Huang, D-p Yao, Liu N, S-x Cui, Jin Y, Z-j Duan (2010) Identification and nearly full-length genome characterization of novel porcine bocaviruses. PLoS One 5(10):e13583

    Article  Google Scholar 

  36. Zeng S, Wang D, Fang L, Ma J, Song T, Zhang R, Chen H, Xiao S (2011) Complete coding sequences and phylogenetic analysis of porcine bocavirus. J Gen Virol 92(4):784–788

    Article  CAS  PubMed  Google Scholar 

  37. Schildgen O (2013) Human bocavirus: lessons learned to date. Pathogens 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xiao CT, Halbur PG, Opriessnig T (2013) Molecular evolutionary genetic analysis of emerging parvoviruses identified in pigs. Infect Genet Evol 16:369–376

    Article  CAS  PubMed  Google Scholar 

  39. Kapoor A, Simmonds P, Slikas E, Li L, Bodhidatta L, Sethabutr O, Triki H, Bahri O, Oderinde BS, Baba MM, Bukbuk DN, Besser J, Bartkus J, Delwart E (2010) Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis 201(11):1633–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Amimo JO, Junga JO, Ogara WO, Vlasova AN, Njahira MN, Maina S, Okoth EA, Bishop RP, Saif LJ, Djikeng A (2015) Detection and genetic characterization of porcine group A rotaviruses in asymptomatic pigs in smallholder farms in East Africa: predominance of P[8] genotype resembling human strains. Vet Microbiol 175(2–4):195–210

    Article  CAS  PubMed  Google Scholar 

  41. Pereira HG, Fialho AM, Flewett TH, Teixeira JMS, Andrade ZP (1988) Novel viruses in human faeces. Lancet 332(8602):103–104

    Article  Google Scholar 

  42. Pereira HG, Flewett TH, Candeias JAN, Barth OM (1988) A virus with a bisegmented double-stranded RNA genome in rat. J Gen Virol 69:2749–2754

    Article  PubMed  Google Scholar 

  43. Masachessi G, Martínez LC, Giordano MO, Barril PA, Isa BM, Ferreyra L, Villareal D, Carello M, Asis C, Nates SV (2007) Picobirnavirus (PBV) natural hosts in captivity and virus excretion pattern in infected animals. Arch Virol 152(5):989–998

    Article  CAS  PubMed  Google Scholar 

  44. Nates SV, Gatti MSV, Ludert JE (2011) The picobirnavirus: an integrated view on its biology, epidemiology and pathogenic potential. Future Virol 6(2):223–235

    Article  Google Scholar 

  45. King AMQ, Adams MJ, Lefkowitz EJ (2011) Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses, vol 9. Elsevier, Amsterdam

    Google Scholar 

  46. Banyai K, Martella V, Bogdan A, Forgach P, Jakab F, Meleg E, Biro H, Melegh B, Szucs G (2008) Genogroup I picobirnaviruses in pigs: evidence for genetic diversity and relatedness to human strains. J Gen Virol 89(2):534–539

    Article  CAS  PubMed  Google Scholar 

  47. Chen M, Sun H, Lan D, Hua X, Cui L, Yuan C, Yang Z (2014) Molecular detection of genogroup I and II picobirnaviruses in pigs in China. Virus Genes 48(3):553–556

    Article  CAS  PubMed  Google Scholar 

  48. Smits SL, Poon LL, van Leeuwen M, Lau P-N, Perera HK, Peiris JS, Simon JH, Osterhaus AD (2011) Genogroup I and II picobirnaviruses in respiratory tracts of pigs. Emerg Infect Dis 17(12):2328–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheung AK, Ng TF, Lager KM, Bayles DO, Alt DP, Delwart EL, Pogranichniy RM, Kehrli ME Jr (2013) A divergent clade of circular single-stranded DNA viruses from pig feces. Arch Virol 158(10):2157–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sachsenröder J, Twardziok SO, Scheuch M, Johne R (2014) The general composition of the faecal virome of pigs depends on age, but not on feeding with a probiotic bacterium. PLoS One 9:e88888

    Article  PubMed  PubMed Central  Google Scholar 

  51. Knowles E, Delwart E, Gorbalenya AE, Hovi T, Hyypia T, King AMQ, LinBerg AM, Pallansch MA, Palmenberg AC, Reuter Gb (2014) Picornaviridae: 26 genera, 46 species and growing. In: EUROPIC 2014: XVIII meeting of the European Study Group on the Molecular Biology of Picornaviruses, Blankenberge, pp 9–14

  52. Reuter G, Boldizsár A, Kiss I, Pankovics P (2008) Candidate new species of Kobuvirus in porcine hosts. Emerg Infect Dis 14:1968–1970

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yu J, Jin M, Zhang Q, Li H, Li D, Xu Z, Li J, Cui S, Yang S, Liu N, Duan Z (2009) Candidate porcine Kobuvirus, China. Emerg Infect Dis 15:823–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khamrin P, Maneekarn N, Kongkaew A, Kongkaew S, Okitsu S, Ushijima H (2009) Porcine kobuvirus in piglets, Thailand. Emerg Infect Dis 15:2075–2076

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sisay Z, Wang Q, Oka T, Saif L (2013) Prevalence and molecular characterization of porcine enteric caliciviruses and first detection of porcine kobuviruses in US swine. Arch Virol 158:1583–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Okitsu S, Khamrin P, Thongprachum A, Hidaka S, Kongkaew S, Kongkaew A, Maneekarn N, Mizuguchi M, Hayakawa S, Ushijima H (2012) Sequence analysis of porcine kobuvirus VP1 region detected in pigs in Japan and Thailand. Virus Genes 44:253–257

    Article  CAS  PubMed  Google Scholar 

  57. Haugegaard J (2010) Prevalence of nematodes in Danish industrialized sow farms with loose housed sows in dynamic groups. Vet Parasitol 168(1):156–159

    Article  PubMed  Google Scholar 

  58. Sauvage V, Gouilh MA, Cheval J, Muth E, Pariente K, Burguiere A, Vr Caro, Manuguerra J-C, Eloit M (2012) A member of a new picornaviridae genus is shed in pig feces. J Virol 86(18):10036–10046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lan D, Ji W, Yang S, Cui L, Yang Z, Yuan C, Hua X (2011) Isolation and characterization of the first Chinese porcine sapelovirus strain. Arch Virol 156(9):1567–1574

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the African Bioscience Challenge Fund (ABCF) Fellowship of Biosciences of East and Central Africa (BecA) to JOA. The authors would like to acknowledge the cooperation and assistance of the African Swine Fever Project team (International Livestock Research Institute) for their support in sample collection. We thank the farmers of smallholder pig farms in Kenya and Uganda for granting the permission to sample the pigs for the present research study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joshua O. Amimo, Mohamed E. El Zowalaty or Gheyath K. Nasrallah.

Ethics declarations

Conflict of interest

None to declare.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amimo, J.O., El Zowalaty, M.E., Githae, D. et al. Metagenomic analysis demonstrates the diversity of the fecal virome in asymptomatic pigs in East Africa. Arch Virol 161, 887–897 (2016). https://doi.org/10.1007/s00705-016-2819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2819-6

Keywords

  • Sequence Contigs
  • Bocavirus
  • ssDNA Virus
  • Porcine Kobuvirus
  • Mammalian Virus