Skip to main content
Log in

Geographically driven adaptation of chilli veinal mottle virus revealed by genetic diversity analysis of the coat protein gene

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Chilli veinal mottle virus (ChiVMV) is an important plant pathogen with a wide host range. The genetic structure of ChiVMV was investigated by analyzing the coat protein (CP) genes of 87 ChiVMV isolates from seven Asian regions. Pairwise F ST values between ChiVMV populations ranged from 0.108 to 0.681, indicating a significant spatial structure for this pathogen. In phylogeny-trait association analysis, the viral isolates from the same region tended to group together, showing a distinct geographic feature. These results suggest that geographic driven adaptation may be an important determinant of the genetic diversity of ChiVMV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. King AM, Lefkowitz E, Adams MJ, Carstens EB (2011) Virus taxonomy, ninth report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, Amsterdam

    Google Scholar 

  2. Moury B, Palloix A, Caranta C, Gognalons P, Souche S, Selassie KG, Marchoux G (2005) Serological, molecular, and pathotype diversity of pepper veinal mottle virus and Chili veinal mottle virus. Phytopathology 95(3):227–232

    Article  CAS  PubMed  Google Scholar 

  3. Tsai WS, Huang YC, Zhang DY, Reddy K, Hidayat SH, Srithongchai W, Green SK, Jan FJ (2008) Molecular characterization of the CP gene and 3′ UTR of Chilli veinal mottle virus from South and Southeast Asia. Plant Pathol 57(3):408–416

    Article  CAS  Google Scholar 

  4. Ding M, Yang C, Zhang L, Jiang ZL, Fang Q, Qin XY, Zhang ZK (2011) Occurrence of Chilli veinal mottle virus in Nicotiana tabacum in Yunnan, China. Plant Dis 95(3):357

    Google Scholar 

  5. Zhao FF, Xi DH, Liu J, Deng XG, Lin HH (2014) First Report of Chilli veinal mottle virus Infecting Tomato (Solanum lycopersicum) in China. Plant Dis 98(11):1589

    Article  Google Scholar 

  6. Ong CA, Varghese G, Ting WP (1980) The effect of Chilli veinal mottle virus on yield of chilli (Capsicum annuum L.). Food Chem 8(1):74–78

    Google Scholar 

  7. Yang J, Dong JH, Zhang TJ, Wang R, Luo ZP, Luo HY, Zhang ZK (2013) A new isolate of Chilli veinal mottle virus that infects tobacco in China. J Plant Pathol 95(1):187–190

    Google Scholar 

  8. Chung BY, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105(15):5897–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shah H, Yasmin T, Fahim M, Hameed S, Haque MI (2009) Prevalence, occurrence and distribution of Chili veinal mottle virus in Pakistan. Pak J Bot 41(2):955–965

    Google Scholar 

  10. Kaur C, Kumar S, Krishna Raj S (2015) Association of a distinct strain of Chilli veinal mottle virus with mottling and distortion disease of Datura inoxiain India. Arch Phytopathology Plant Protect 48(6):545–554

    Article  CAS  Google Scholar 

  11. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  CAS  PubMed  Google Scholar 

  14. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10(3):564–567

    Article  PubMed  Google Scholar 

  15. Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11(2):155–165

    Article  PubMed  Google Scholar 

  16. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1(1):vov003

    Article  Google Scholar 

  17. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parker J, Rambaut A, Pybus OG (2008) Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect Genet Evol 8(3):239–246

    Article  CAS  PubMed  Google Scholar 

  20. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679

    Article  CAS  PubMed  Google Scholar 

  21. Yang Z (2007) PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591

    Article  CAS  PubMed  Google Scholar 

  22. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a Fast, Unconstrained Bayesian AppRoximation for inferring selection. Mol Biol Evol 30(5):1196–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kosakovsky Pond SL, Frost SDW, Grossman Z, Gravenor MB, Richman DD, Brown AJL (2006) Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Comput Biol 2(6):e62

    Article  PubMed Central  Google Scholar 

  24. Yang Z, Bielawski J (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496–503

    Article  PubMed  Google Scholar 

  25. Cuevas J, Delaunay A, Rupar M, Jacquot E, Elena SF (2012) Molecular evolution and phylogeography of Potato virus Y based on the CP gene. J Gen Virol 93(Pt 11):2496–2501

    Article  CAS  PubMed  Google Scholar 

  26. Gibbs A, Ohshima K (2010) Potyviruses and the digital revolution. Annu Rev Phytopathol 48:205–223

    Article  CAS  PubMed  Google Scholar 

  27. Moury B, Morel C, Johansen E, Jacquemond M (2002) Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. J Gen Virol 83(Pt 10):2563–2573

    Article  CAS  PubMed  Google Scholar 

  28. Awadalla P (2003) The evolutionary genomics of pathogen recombination. Nat Rev Genet 4(1):50–60

    Article  CAS  PubMed  Google Scholar 

  29. Sironi M, Cagliani R, Forni D, Clerici M (2015) Evolutionary insights into host-pathogen interactions from mammalian sequence data. Nat Rev Genet 16(4):224–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Public Science and Technology Research Funds Projects of General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China (no. 201410076), Fujian Natural Science Funds for Distinguished Young Scholar (no. 2014J06008) and the Natural Science Foundation of Fujian Province (no. 2015J01148), P. R. China. We thank Drs. Huasong Zou, Zhenguo Du, Zhijian, Li and James L. Starr for comments and suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Shen.

Additional information

F. Gao and J. Jin contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2016_2761_MOESM1_ESM.pdf

Fig. S1 The frequency of threonine (Thr), serine (Ser), aspartate (Asp), glutamate (Glu), isoleucine (Ile) and asparagine (Asn) at aa position 29 of ChiVMV CP of different geographic origin. The six different amino acid residues are indicted by distinct colors (PDF 547 kb)

Supplementary material 2 (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Jin, J., Zou, W. et al. Geographically driven adaptation of chilli veinal mottle virus revealed by genetic diversity analysis of the coat protein gene. Arch Virol 161, 1329–1333 (2016). https://doi.org/10.1007/s00705-016-2761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2761-7

Keywords

Navigation