Archives of Virology

, Volume 161, Issue 2, pp 335–343 | Cite as

Detection and survey of coffee ringspot virus in Brazil

  • T. O. Ramalho
  • A. R. Figueira
  • R. Wang
  • O. Jones
  • L. E. Harris
  • M. M. GoodinEmail author
Original Article


Coffee ringspot virus (CoRSV) a member of the proposed genus “Dichorhavirus”, was surveyed on commercial and research farms spanning an area responsible for the majority of Coffea arabica production in Brazil. Virus-infected plants were found at one hundred percent of locations (n = 45) sampled. All cultivars, regardless of cherry color, were found to serve as hosts, suggesting that there is limited resistance in commercially employed germplasm. Reverse transcription PCR analysis revealed that the virus is contained within symptomatic lesions, with little systemic spread throughout leaves. Phylogenetic analysis based on the ORF1 (nucleocapsid) gene identified a strong geo-spatial relationship among isolates, which clustered into three clades. Despite low genetic diversity among isolates, variation in symptom expression was observed in the experimental host Chenopodium quinoa. Our analyses support the hypothesis that the spread of CoRSV is constrained by the clonal expansion of thelytokous populations of Brevipalpus phoenicis. The widespread occurrence of this virus suggests that it is much more prevalent than previously thought.


Coffee Production Nucleotide Substitution Rate Coffee Rust Symptomatic Tissue Thelytokous Female 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the CNPq, CAPES, FAPEMIG, and NSF funding agencies for providing research grants to M.G. and A.F. We would also like to thank the farmers and cooperative workers who graciously provided access to their farms in support of this research. This publication recognizes CAPES Project No. A009, 1901133, and NSF-IOS-0749519).

Supplementary material

705_2015_2663_MOESM1_ESM.jpg (355 kb)
Supplementary Data 1 Combined phylogeny of CoRSV isolates using data shown in Figures 3 and 4. Sample number on the tree corresponds to collection site shown in A. Only bootstrap values greater than 60% are shown. Scale bar = number of changes per site. Collection sites of CoRSV in major coffee growing regions of Brazil; Western Minas Gerais (red), Bahia (blue) and Eastern Minas Gerais/Espírito Santo (pink). (JPEG 355 kb)


  1. 1.
    Acevedo A, Andino R (2014) Library preparation for highly accurate population sequencing of RNA viruses. Nat Protoc 9:1760–1769PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Almeida JEM, Mori AE, Pozza EA, Reis PR, Figueira AD (2012) Temporal analysis and control of the ringspot disease and mite vector of coffee ringspot virus. Pesqui Agropecu Bras 47:913–919CrossRefGoogle Scholar
  3. 3.
    Bertrand B, Boulanger R, Dussert S, Ribeyre F, Berthiot L, Descroix F, Joet T (2012) Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem 135:2575–2583CrossRefPubMedGoogle Scholar
  4. 4.
    Boari AJ, Figueira AR, Neder DG, Santos RC, Nogueira N, Rossi ML (2006) Coffee ringspot virus (CoRSV): influence on the beverage quality and yield of coffee beans. Summa Phytopathol 32:192–194CrossRefGoogle Scholar
  5. 5.
    Boari AJ (2011) Mancha anular do cafeeiro (Coffe ringspot virus – CoRSV. Embrapa Amazônia OrientalGoogle Scholar
  6. 6.
    Bunn C, Läderach P, Ovalle Rivera O, Kirschke D (2014) A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Clim Change 129:89–101CrossRefGoogle Scholar
  7. 7.
    Carvalho Mineiro JL, Sato ME, Raga A, Arthur V (2008) Population dynamics of phytophagous and predaceous mites on coffee in Brazil, with emphasis on Brevipalpus phoenicis (Acari: Tenuipalpidae). Exp Appl Acarol 44:277–291CrossRefPubMedGoogle Scholar
  8. 8.
    Chagas CM, Kitajima EW, Rodrigues JC (2003) Coffee ringspot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in coffee. Exp Appl Acarol 30:203–213CrossRefPubMedGoogle Scholar
  9. 9.
    Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One 7:e47981PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Dietzgen RG, Kuhn JH, Clawson AN, Freitas-Astua J, Goodin MM, Kitajima EW, Kondo H, Wetzel T, Whitfield AE (2014) Dichorhavirus: a proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant viruses. Arch Virol 159:607–619CrossRefPubMedGoogle Scholar
  12. 12.
    Domingo E (1998) Quasispecies and the implications for virus persistence and escape. Clin Diagn Virol 10:97–101CrossRefPubMedGoogle Scholar
  13. 13.
    Eigen M (1996) On the nature of virus quasispecies. Trends Microbiol 4:216–218CrossRefPubMedGoogle Scholar
  14. 14.
    Figueira AR (2008) A mancha anelar do cafeeiro causada pelo Coffee ringspot virus (CoRSV) em Minas Gerais. Núcleo de Estudos em Fitopatologia; Universidade Federal de Lavras (Org) Manejo fitossanitário da cultura do cafeeiro Sociedade Brasileira de Fitopatologia, Brasília, DF, Brasil 127–139Google Scholar
  15. 15.
    Ganesan U, Bragg JN, Deng M, Marr S, Lee MY, Qian S, Shi M, Kappel J, Peters C, Lee Y, Goodin MM, Dietzgen RG, Li Z, Jackson AO (2013) Construction of a Sonchus yellow net virus Minireplicon: a step toward reverse genetic analysis of plant negative-strand RNA viruses. J Virol 87:10598–10611PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Gross M (2009) Coffee growers feel the heat. Curr Biol (CB) 19:R965–R966CrossRefGoogle Scholar
  17. 17.
    Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling HM, Borgemeister C (2009) Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS One 4:e6487PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Jaramillo J, Muchugu E, Vega FE, Davis A, Borgemeister C, Chabi-Olaye A (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS One 6:e24528PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Kitajima EW, Chagas CM, Rodrigues JC (2003) Brevipalpus-transmitted plant virus and virus-like diseases: cytopathology and some recent cases. Exp Appl Acarol 30:135–160CrossRefPubMedGoogle Scholar
  20. 20.
    Kitajima EW, Rodrigues JCV, Freitas-Astua J (2010) An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Sci Agr 67:348–371CrossRefGoogle Scholar
  21. 21.
    McWilliam Leitch EC, McLauchlan J (2013) Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing. J Virol 87:12648–12655PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Mishra MK, Slater A (2012) Recent advances in the genetic transformation of coffee. Biotechnol Res Int 2012:580857PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Nunes MA, Lameiro P, Calegario RF, Bergamini MP, Coerini LF, Kitajima EW, Bastianel M, Novelli VM, Freitas-Astúa J (2012) Trapoeraba (Commelina benghalensis L.) como fonte de inóculo do vírus da leprose dos citros. Citrus Res Technol (Cordeirópolis) 33:1–9CrossRefGoogle Scholar
  24. 24.
    Ramalho TO, Figueira AR, Sotero AJ, Wang R, Geraldino Duarte PS, Farman M, Goodin MM (2014) Characterization of coffee ringspot virus-lavras: a model for an emerging threat to coffee production and quality. Virology 464–465C:385–396Google Scholar
  25. 25.
    Reis PR, Neto MP, Franco RA (2005) Control of Brevipalpus phoenicis (Geijskes, 1939) and Oligonychus ilicis (McGregor, 1917) (Acari: Tenuipalpidae, Tetranychidae) in coffee plants and the impact on beneficial mites. II—Spirodiclofen and Azocyclotin. Cienc Agrotec 29:528–537CrossRefGoogle Scholar
  26. 26.
    Ribas AF, Dechamp E, Champion A, Bertrand B, Combes MC, Verdeil JL, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11:92PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Rocha CS, Castillo-Urquiza GP, Lima AT, Silva FN, Xavier CA, Hora-Junior BT, Beserra-Junior JE, Malta AW, Martin DP, Varsani A, Alfenas-Zerbini P, Mizubuti ES, Zerbini FM (2013) Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. J Virol 87:5784–5799PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Roossinck MJ, Schneider WL (2006) Mutant clouds and occupation of sequence space in plant RNA viruses. Curr Top Microbiol Immunol 299:337–348PubMedGoogle Scholar
  29. 29.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  30. 30.
    Sera T, Sera GH, Fazuoli LC, Bettencourt AJ (2013) IPR 99-Dwarf arabica coffee cultivar resistant to coffee ringspot virus. Crop Breed Appl Biotechnol 13:91–94CrossRefGoogle Scholar
  31. 31.
    Thomas MA, Weston B, Joseph M, Wu W, Nekrutenko A, Tonellato PJ (2003) Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes. Mol Biol Evol 20:964–968CrossRefPubMedGoogle Scholar
  32. 32.
    USDA (2015) Online—home. In: Production, supply and distribution onlineGoogle Scholar
  33. 33.
    Weeks AR, Marec F, Breeuwer JA (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482CrossRefPubMedGoogle Scholar
  34. 34.
    Wyant PS, Strohmeier S, Schafer B, Krenz B, Assuncao IP, Lima GS, Jeske H (2012) Circular DNA genomics (circomics) exemplified for geminiviruses in bean crops and weeds of northeastern Brazil. Virology 427:151–157CrossRefPubMedGoogle Scholar
  35. 35.
    Zullo J, Pinto HS, Assad ED, de Avila AMH (2011) Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Clim Change 109:535–548CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Plant PathologyUniversity of KentuckyLexingtonUSA
  2. 2.Departamento de FitopatologiaUniversidade Federal de LavrasLavrasBrazil

Personalised recommendations