Skip to main content

Advertisement

Log in

Detection and survey of coffee ringspot virus in Brazil

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Coffee ringspot virus (CoRSV) a member of the proposed genus “Dichorhavirus”, was surveyed on commercial and research farms spanning an area responsible for the majority of Coffea arabica production in Brazil. Virus-infected plants were found at one hundred percent of locations (n = 45) sampled. All cultivars, regardless of cherry color, were found to serve as hosts, suggesting that there is limited resistance in commercially employed germplasm. Reverse transcription PCR analysis revealed that the virus is contained within symptomatic lesions, with little systemic spread throughout leaves. Phylogenetic analysis based on the ORF1 (nucleocapsid) gene identified a strong geo-spatial relationship among isolates, which clustered into three clades. Despite low genetic diversity among isolates, variation in symptom expression was observed in the experimental host Chenopodium quinoa. Our analyses support the hypothesis that the spread of CoRSV is constrained by the clonal expansion of thelytokous populations of Brevipalpus phoenicis. The widespread occurrence of this virus suggests that it is much more prevalent than previously thought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acevedo A, Andino R (2014) Library preparation for highly accurate population sequencing of RNA viruses. Nat Protoc 9:1760–1769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Almeida JEM, Mori AE, Pozza EA, Reis PR, Figueira AD (2012) Temporal analysis and control of the ringspot disease and mite vector of coffee ringspot virus. Pesqui Agropecu Bras 47:913–919

    Article  Google Scholar 

  3. Bertrand B, Boulanger R, Dussert S, Ribeyre F, Berthiot L, Descroix F, Joet T (2012) Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem 135:2575–2583

    Article  CAS  PubMed  Google Scholar 

  4. Boari AJ, Figueira AR, Neder DG, Santos RC, Nogueira N, Rossi ML (2006) Coffee ringspot virus (CoRSV): influence on the beverage quality and yield of coffee beans. Summa Phytopathol 32:192–194

    Article  Google Scholar 

  5. Boari AJ (2011) Mancha anular do cafeeiro (Coffe ringspot virus – CoRSV. Embrapa Amazônia Oriental

  6. Bunn C, Läderach P, Ovalle Rivera O, Kirschke D (2014) A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Clim Change 129:89–101

    Article  Google Scholar 

  7. Carvalho Mineiro JL, Sato ME, Raga A, Arthur V (2008) Population dynamics of phytophagous and predaceous mites on coffee in Brazil, with emphasis on Brevipalpus phoenicis (Acari: Tenuipalpidae). Exp Appl Acarol 44:277–291

    Article  PubMed  Google Scholar 

  8. Chagas CM, Kitajima EW, Rodrigues JC (2003) Coffee ringspot virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) in coffee. Exp Appl Acarol 30:203–213

    Article  CAS  PubMed  Google Scholar 

  9. Davis AP, Gole TW, Baena S, Moat J (2012) The impact of climate change on indigenous Arabica coffee (Coffea arabica): predicting future trends and identifying priorities. PLoS One 7:e47981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dietzgen RG, Kuhn JH, Clawson AN, Freitas-Astua J, Goodin MM, Kitajima EW, Kondo H, Wetzel T, Whitfield AE (2014) Dichorhavirus: a proposed new genus for Brevipalpus mite-transmitted, nuclear, bacilliform, bipartite, negative-strand RNA plant viruses. Arch Virol 159:607–619

    Article  CAS  PubMed  Google Scholar 

  12. Domingo E (1998) Quasispecies and the implications for virus persistence and escape. Clin Diagn Virol 10:97–101

    Article  CAS  PubMed  Google Scholar 

  13. Eigen M (1996) On the nature of virus quasispecies. Trends Microbiol 4:216–218

    Article  CAS  PubMed  Google Scholar 

  14. Figueira AR (2008) A mancha anelar do cafeeiro causada pelo Coffee ringspot virus (CoRSV) em Minas Gerais. Núcleo de Estudos em Fitopatologia; Universidade Federal de Lavras (Org) Manejo fitossanitário da cultura do cafeeiro Sociedade Brasileira de Fitopatologia, Brasília, DF, Brasil 127–139

  15. Ganesan U, Bragg JN, Deng M, Marr S, Lee MY, Qian S, Shi M, Kappel J, Peters C, Lee Y, Goodin MM, Dietzgen RG, Li Z, Jackson AO (2013) Construction of a Sonchus yellow net virus Minireplicon: a step toward reverse genetic analysis of plant negative-strand RNA viruses. J Virol 87:10598–10611

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gross M (2009) Coffee growers feel the heat. Curr Biol (CB) 19:R965–R966

    Article  CAS  Google Scholar 

  17. Jaramillo J, Chabi-Olaye A, Kamonjo C, Jaramillo A, Vega FE, Poehling HM, Borgemeister C (2009) Thermal tolerance of the coffee berry borer Hypothenemus hampei: predictions of climate change impact on a tropical insect pest. PLoS One 4:e6487

    Article  PubMed Central  PubMed  Google Scholar 

  18. Jaramillo J, Muchugu E, Vega FE, Davis A, Borgemeister C, Chabi-Olaye A (2011) Some like it hot: the influence and implications of climate change on coffee berry borer (Hypothenemus hampei) and coffee production in East Africa. PLoS One 6:e24528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kitajima EW, Chagas CM, Rodrigues JC (2003) Brevipalpus-transmitted plant virus and virus-like diseases: cytopathology and some recent cases. Exp Appl Acarol 30:135–160

    Article  CAS  PubMed  Google Scholar 

  20. Kitajima EW, Rodrigues JCV, Freitas-Astua J (2010) An annotated list of ornamentals naturally found infected by Brevipalpus mite-transmitted viruses. Sci Agr 67:348–371

    Article  Google Scholar 

  21. McWilliam Leitch EC, McLauchlan J (2013) Determining the cellular diversity of hepatitis C virus quasispecies by single-cell viral sequencing. J Virol 87:12648–12655

    Article  PubMed Central  PubMed  Google Scholar 

  22. Mishra MK, Slater A (2012) Recent advances in the genetic transformation of coffee. Biotechnol Res Int 2012:580857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Nunes MA, Lameiro P, Calegario RF, Bergamini MP, Coerini LF, Kitajima EW, Bastianel M, Novelli VM, Freitas-Astúa J (2012) Trapoeraba (Commelina benghalensis L.) como fonte de inóculo do vírus da leprose dos citros. Citrus Res Technol (Cordeirópolis) 33:1–9

    Article  Google Scholar 

  24. Ramalho TO, Figueira AR, Sotero AJ, Wang R, Geraldino Duarte PS, Farman M, Goodin MM (2014) Characterization of coffee ringspot virus-lavras: a model for an emerging threat to coffee production and quality. Virology 464–465C:385–396

  25. Reis PR, Neto MP, Franco RA (2005) Control of Brevipalpus phoenicis (Geijskes, 1939) and Oligonychus ilicis (McGregor, 1917) (Acari: Tenuipalpidae, Tetranychidae) in coffee plants and the impact on beneficial mites. II—Spirodiclofen and Azocyclotin. Cienc Agrotec 29:528–537

    Article  Google Scholar 

  26. Ribas AF, Dechamp E, Champion A, Bertrand B, Combes MC, Verdeil JL, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11:92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rocha CS, Castillo-Urquiza GP, Lima AT, Silva FN, Xavier CA, Hora-Junior BT, Beserra-Junior JE, Malta AW, Martin DP, Varsani A, Alfenas-Zerbini P, Mizubuti ES, Zerbini FM (2013) Brazilian begomovirus populations are highly recombinant, rapidly evolving, and segregated based on geographical location. J Virol 87:5784–5799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Roossinck MJ, Schneider WL (2006) Mutant clouds and occupation of sequence space in plant RNA viruses. Curr Top Microbiol Immunol 299:337–348

    CAS  PubMed  Google Scholar 

  29. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  30. Sera T, Sera GH, Fazuoli LC, Bettencourt AJ (2013) IPR 99-Dwarf arabica coffee cultivar resistant to coffee ringspot virus. Crop Breed Appl Biotechnol 13:91–94

    Article  Google Scholar 

  31. Thomas MA, Weston B, Joseph M, Wu W, Nekrutenko A, Tonellato PJ (2003) Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes. Mol Biol Evol 20:964–968

    Article  CAS  PubMed  Google Scholar 

  32. USDA (2015) Online—home. In: Production, supply and distribution online

  33. Weeks AR, Marec F, Breeuwer JA (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482

    Article  CAS  PubMed  Google Scholar 

  34. Wyant PS, Strohmeier S, Schafer B, Krenz B, Assuncao IP, Lima GS, Jeske H (2012) Circular DNA genomics (circomics) exemplified for geminiviruses in bean crops and weeds of northeastern Brazil. Virology 427:151–157

    Article  CAS  PubMed  Google Scholar 

  35. Zullo J, Pinto HS, Assad ED, de Avila AMH (2011) Potential for growing Arabica coffee in the extreme south of Brazil in a warmer world. Clim Change 109:535–548

    Article  Google Scholar 

Download references

Acknowledgments

We thank the CNPq, CAPES, FAPEMIG, and NSF funding agencies for providing research grants to M.G. and A.F. We would also like to thank the farmers and cooperative workers who graciously provided access to their farms in support of this research. This publication recognizes CAPES Project No. A009, 1901133, and NSF-IOS-0749519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Goodin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Data 1

Combined phylogeny of CoRSV isolates using data shown in Figures 3 and 4. Sample number on the tree corresponds to collection site shown in A. Only bootstrap values greater than 60% are shown. Scale bar = number of changes per site. Collection sites of CoRSV in major coffee growing regions of Brazil; Western Minas Gerais (red), Bahia (blue) and Eastern Minas Gerais/Espírito Santo (pink). (JPEG 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalho, T.O., Figueira, A.R., Wang, R. et al. Detection and survey of coffee ringspot virus in Brazil. Arch Virol 161, 335–343 (2016). https://doi.org/10.1007/s00705-015-2663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2663-0

Keywords

Navigation