Skip to main content

Advertisement

Log in

Classical swine fever virus marker vaccine strain CP7_E2alf: genetic stability in vitro and in vivo

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Recently, CP7_E2alf (Suvaxyn®CSF Marker), a live marker vaccine against classical swine fever virus, was licensed through the European Medicines Agency. For application of such a genetically engineered virus under field conditions, knowledge about its genetic stability is essential. Here, we report on stability studies that were conducted to assess and compare the mutation rate of CP7_E2alf in vitro and in vivo. Sequence analyses upon passaging confirmed the high stability of CP7_E2alf, and no recombination events were observed in the experimental setup. The data obtained in this study confirm the genetic stability of CP7_E2alf as an important safety component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aebischer A, Müller M, Hofmann MA (2013) Two newly developed E(rns)-based ELISAs allow the differentiation of Classical Swine Fever virus-infected from marker-vaccinated animals and the discrimination of pestivirus antibodies. Vet Microbiol 161:274–285

    Article  CAS  PubMed  Google Scholar 

  2. Backer JA, Hagenaars TJ, van Roermund HJ, de Jong MC (2009) Modelling the effectiveness and risks of vaccination strategies to control classical swine fever epidemics. J R Soc Interface 6:849–861

    Article  PubMed Central  PubMed  Google Scholar 

  3. Beer M, Reimann I, Hoffmann B, Depner K (2007) Novel marker vaccines against classical swine fever. Vaccine 25:5665–5670

    Article  CAS  PubMed  Google Scholar 

  4. Blome S, Meindl-Böhmer A, Loeffen W, Thuer B, Moennig V (2006) Assessment of classical swine fever diagnostics and vaccine performance. Rev Sci Tech 25:1025–1038

    CAS  PubMed  Google Scholar 

  5. Blome S, Gabriel C, Staubach C, Leifer I, Strebelow G, Beer M (2011) Genetic differentiation of infected from vaccinated animals after implementation of an emergency vaccination strategy against classical swine fever in wild boar. Vet Microbiol 153:373–376

    Article  CAS  PubMed  Google Scholar 

  6. Blome S, Aebischer A, Lange E, Hofmann M, Leifer I, Loeffen W, Koenen F, Beer M (2012) Comparative evaluation of live marker vaccine candidates “CP7_E2alf” and “flc11” along with C-strain “Riems” after oral vaccination. Vet Microbiol 158:42–59

    Article  CAS  PubMed  Google Scholar 

  7. Blome S, Gabriel C, Schmeiser S, Meyer D, Meindl-Böhmer A, Koenen F, Beer M (2014) Efficacy of marker vaccine candidate CP7_E2alf against challenge with classical swine fever virus isolates of different genotypes. Vet Microbiol 169:8–17

    Article  CAS  PubMed  Google Scholar 

  8. Chen Y, Chen YF (2014) Extensive homologous recombination in classical swine fever virus: A re-evaluation of homologous recombination events in the strain AF407339. Saudi J Biol Sci 21:311–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dong XN, Chen YH (2007) Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 25:205–230

    Article  CAS  PubMed  Google Scholar 

  10. Dräger C, Petrov A, Beer M, Teifke JP, Blome S (2015) Classical swine fever virus marker vaccine strain CP7_E2alf: shedding and dissemination studies in boars. Vaccine 33:3100–3103

    Article  PubMed  Google Scholar 

  11. Eble PL, Geurts Y, Quak S, Moonen-Leusen HW, Blome S, Hofmann MA, Koenen F, Beer M, Loeffen WL (2013) Efficacy of chimeric Pestivirus vaccine candidates against classical swine fever: protection and DIVA characteristics. Vet Microbiol 162:437–446

    Article  CAS  PubMed  Google Scholar 

  12. Edwards S, Fukusho A, Lefevre PC, Lipowski A, Pejsak Z, Roehe P, Westergaard J (2000) Classical swine fever: the global situation. Vet Microbiol 73:103–119

    Article  CAS  PubMed  Google Scholar 

  13. Gabriel C, Blome S, Urniza A, Juanola S, Koenen F, Beer M (2012) Towards licensing of CP7_E2alf as marker vaccine against classical swine fever—duration of immunity. Vaccine 30:2928–2936

    Article  CAS  PubMed  Google Scholar 

  14. Gallei A, Pankraz A, Thiel HJ, Becher P (2004) RNA recombination in vivo in the absence of viral replication. J Virol 78:6271–6281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gallei A, Orlich M, Thiel HJ, Becher P (2005) Noncytopathogenic pestivirus strains generated by nonhomologous RNA recombination: alterations in the NS4A/NS4B coding region. J Virol 79:14261–14270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gallei A, Rümenapf T, Thiel HJ, Becher P (2005) Characterization of helper virus-independent cytopathogenic classical swine fever virus generated by an in vivo RNA recombination system. J Virol 79:2440–2448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. He CQ, Ding NZ, Chen JG, Li YL (2007) Evidence of natural recombination in classical swine fever virus. Virus Res 126:179–185

    Article  CAS  PubMed  Google Scholar 

  18. Ji W, Niu DD, Si HL, Ding NZ, He CQ (2014) Vaccination influences the evolution of classical swine fever virus. Infect Genet Evol 25C:69–77

    Article  Google Scholar 

  19. Juozapaitis M, Aguiar Moreira E, Mena I, Giese S, Riegger D, Pohlmann A, Höper D, Zimmer G, Beer M, Garcia-Sastre A, Schwemmle M (2014) An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus. Nat Commun 5:4448

    Article  CAS  PubMed  Google Scholar 

  20. Koenig P, Hoffmann B, Depner KR, Reimann I, Teifke JP, Beer M (2007) Detection of classical swine fever vaccine virus in blood and tissue samples of pigs vaccinated either with a conventional C-strain vaccine or a modified live marker vaccine. Vet Microbiol 120:343–351

    Article  CAS  PubMed  Google Scholar 

  21. Koenig P, Lange E, Reimann I, Beer M (2007) CP7_E2alf: a safe and efficient marker vaccine strain for oral immunisation of wild boar against classical swine fever virus (CSFV). Vaccine 25:3391–3399

    Article  CAS  PubMed  Google Scholar 

  22. Lee YM, Tscherne DM, Yun SI, Frolov I, Rice CM (2005) Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J Virol 79:3231–3242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Leifer I, Depner K, Blome S, Le Potier MF, Le Dimna M, Beer M, Hoffmann B (2009) Differentiation of C-strain “Riems” or CP7_E2alf vaccinated animals from animals infected by classical swine fever virus field strains using real-time RT-PCR. J Virol Methods 158:114–122

    Article  CAS  PubMed  Google Scholar 

  24. Leifer I, Lange E, Reimann I, Blome S, Juanola S, Duran JP, Beer M (2009) Modified live marker vaccine candidate CP7_E2alf provides early onset of protection against lethal challenge infection with classical swine fever virus after both intramuscular and oral immunization. Vaccine 27:6522–6529

    Article  CAS  PubMed  Google Scholar 

  25. Meyers G, Rümenapf T, Thiel HJ (1989) Ubiquitin in a togavirus. Nature 341:491

    Article  CAS  PubMed  Google Scholar 

  26. Reimann I, Depner K, Trapp S, Beer M (2004) An avirulent chimeric Pestivirus with altered cell tropism protects pigs against lethal infection with classical swine fever virus. Virology 322:143–157

    Article  CAS  PubMed  Google Scholar 

  27. Tignon M, Kulcsar G, Haegeman A, Barna T, Fabian K, Levai R, Van der Stede Y, Farsang A, Vrancken R, Belak K, Koenen F (2010) Classical swine fever: comparison of oronasal immunisation with CP7E2alf marker and C-strain vaccines in domestic pigs. Vet Microbiol 142:59–68

    Article  CAS  PubMed  Google Scholar 

  28. van Oirschot JT (2003) Vaccinology of classical swine fever: from lab to field. Vet Microbiol 96:367–384

    Article  PubMed  Google Scholar 

  29. van Oirschot JT (2003) Emergency vaccination against classical swine fever. Dev Biol (Basel) 114:259–267

    Google Scholar 

  30. Vanderhallen H, Mittelholzer C, Hofmann MA, Koenen F (1999) Classical swine fever virus is genetically stable in vitro and in vivo. Arch Virol 144:1669–1677

    Article  CAS  PubMed  Google Scholar 

  31. Weber MN, Streck AF, Silveira S, Mosena AC, Silva MS, Canal CW (2015) Homologous recombination in pestiviruses: identification of three putative novel events between different subtypes/genogroups. Infect Genet Evol 30:219–224

    Article  CAS  PubMed  Google Scholar 

  32. Xia H, Harimoorthy R, Vijayaraghavan B, Blome S, Widen F, Beer M, Belak S, Liu L (2015) Differentiation of classical swine fever virus infection from CP7_E2alf marker vaccination by a multiplex microsphere immunoassay. Clin Vaccine Immunol 22:65–71

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Patrick Zitzow, Ulrike Kleinert and Kristin Trippler for the excellent laboratory work. The research project leading to these results has received funding through the vaccine manufacturer, Zoetis, and through the European Union’s Seventh Framework Program under grant agreement no. 289364 (RAPIDIA-Field).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Blome.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goller, K.V., Dräger, C., Höper, D. et al. Classical swine fever virus marker vaccine strain CP7_E2alf: genetic stability in vitro and in vivo . Arch Virol 160, 3121–3125 (2015). https://doi.org/10.1007/s00705-015-2611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2611-z

Keywords

Navigation