Skip to main content
Log in

Nuclear localization of the p17 protein of avian reovirus is correlated with autophagy induction and an increase in viral replication

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

p17 is a nonstructural protein of avian reovirus (ARV) that induces autophagy in infected cells. In the present study, we investigated the effect of p17 and its nuclear localization signal (NLS) on autophagy and viral replication. When Vero cells and DF1 cells were transfected with mutant p17 in which lysine (K) at position 122 and arginine (R) at position 123 were mutated to alanine (A), the expression level of LC3 II decreased dramatically after transfection. The expression of the polypeptide encompassing the first 103 amino acids of p17, a region that did not contain the NLS, did not have a significant effect on autophagy. Moreover, when cells overexpressing mutant p17 were infected with the ARV GX2010/1 strain, the viral titer was significantly decreased compared with the expression of wild-type p17. In general, the NLS of p17 facilitates the induction of autophagy and is correlated with an increase in virus production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aminev AG, Amineva SP, Palmenberg AC (2003) Encephalomyocarditis viral protein 2A localizes to nucleoli and inhibits cap-dependent mRNA translation. Virus Res 95:45–57

    Article  CAS  PubMed  Google Scholar 

  2. Aminev AG, Amineva SP, Palmenberg AC (2003) Encephalomyocarditis virus (EMCV) proteins 2A and 3BCD localize to nuclei and inhibit cellular mRNA transcription but not rRNA transcription. Virus Res 95:59–73

    Article  CAS  PubMed  Google Scholar 

  3. Amineva SP, Aminev AG, Palmenberg AC, Gern JE (2004) Rhinovirus 3C protease precursors 3CD and 3CD’ localize to the nuclei of infected cells. J Gen Virol 85:2969–2979

    Article  CAS  PubMed  Google Scholar 

  4. Benavente J, Martínez-Costas J (2007) Avian reovirus: structure and biology. Virus Res 123:105–119

    Article  CAS  PubMed  Google Scholar 

  5. Beugnet A, Tee AR, Taylor PM, Proud CG (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. The Biochemical journal 372:555–566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bian J, Wang K, Kong X, Liu H, Chen F, Hu M, Zhang X, Jiao X, Ge B, Wu Y, Meng S (2011) Caspase- and p38-MAPK-dependent induction of apoptosis in A549 lung cancer cells by Newcastle disease virus. Arch Virol 156:1335–1344

    Article  CAS  PubMed  Google Scholar 

  7. Bodelon G, Labrada L, Martinez-Costas J, Benavente J (2001) The avian reovirus genome segment S1 is a functionally tricistronic gene that expresses one structural and two nonstructural proteins in infected cells. Virology 290:181–191

    Article  CAS  PubMed  Google Scholar 

  8. Cao S, Liu X, Yu M, Li J, Jia X, Bi Y, Sun L, Gao GF, Liu W (2012) A nuclear export signal in the matrix protein of Influenza A virus is required for efficient virus replication. J Virol 86:4883–4891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Castedo M, Ferri KF, Kroemer G (2002) Mammalian target of rapamycin (mTOR): pro- and anti-apoptotic. Cell Death Differ 9:99–100

    Article  CAS  PubMed  Google Scholar 

  10. Chi PI, Huang WR, Lai IH, Cheng CY, Liu HJ (2013) The p17 nonstructural protein of avian reovirus triggers autophagy enhancing virus replication via activation of phosphatase and tensin deleted on chromosome 10 (PTEN) and AMP-activated protein kinase (AMPK), as well as dsRNA-dependent protein kinase (PKR)/eIF2alpha signaling pathways. J Biol Chem 288:3571–3584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Codogno P, Meijer AJ (2006) Atg5: more than an autophagy factor. Nat Cell Biol 8:1045–1047

    Article  CAS  PubMed  Google Scholar 

  12. Costas C, Martinez-Costas J, Bodelon G, Benavente J (2005) The second open reading frame of the avian reovirus S1 gene encodes a transcription-dependent and CRM1-independent nucleocytoplasmic shuttling protein. J Virol 79:2141–2150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Duan Z, Song Q, Wang Y, He L, Chen J, Zhu Y, Hu S, Liu X (2013) Characterization of signal sequences determining the nuclear export of Newcastle disease virus matrix protein. Arch Virol 158:2589–2595

    Article  CAS  PubMed  Google Scholar 

  14. Duan Z, Li J, Zhu J, Chen J, Xu H, Wang Y, Liu H, Hu S, Liu X (2014) A single amino acid mutation, R42A, in the Newcastle disease virus matrix protein abrogates its nuclear localization and attenuates viral replication and pathogenicity. J Gen Virol 95:1067–1073

    Article  CAS  PubMed  Google Scholar 

  15. Fullgrabe J, Lynch-Day MA, Heldring N, Li W, Struijk RB, Ma Q, Hermanson O, Rosenfeld MG, Klionsky DJ, Joseph B (2013) The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 500:468–471

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hiscox JA (2003) The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication. Virus Res 95:13–22

    Article  CAS  PubMed  Google Scholar 

  17. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lidsky PV, Hato S, Bardina MV, Aminev AG, Palmenberg AC, Sheval EV, Polyakov VY, van Kuppeveld FJ, Agol VI (2006) Nucleocytoplasmic traffic disorder induced by cardioviruses. J Virol 80:2705–2717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Liu HJ, Lin PY, Lee JW, Hsu HY, Shih WL (2005) Retardation of cell growth by avian reovirus p17 through the activation of p53 pathway. Biochem Biophys Res Commun 336:709–715

    Article  CAS  PubMed  Google Scholar 

  21. Meng S, Jiang K, Zhang X, Zhang M, Zhou Z, Hu M, Yang R, Sun C, Wu Y (2012) Avian reovirus triggers autophagy in primary chicken fibroblast cells and Vero cells to promote virus production. Arch Virol 157:661–668

    Article  CAS  PubMed  Google Scholar 

  22. Peeples ME, Wang C, Gupta KC, Coleman N (1992) Nuclear entry and nucleolar localization of the Newcastle disease virus (NDV) matrix protein occur early in infection and do not require other NDV proteins. J Virol 66:3263–3269

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Petiot A, Pattingre S, Arico S, Meley D, Codogno P (2002) Diversity of signaling controls of macroautophagy in mammalian cells. Cell Struct Funct 27:431–441

    Article  PubMed  Google Scholar 

  24. Phillips GJ (2001) Green fluorescent protein—a bright idea for the study of bacterial protein localization. FEMS Microbiol Lett 204:9–18

    CAS  PubMed  Google Scholar 

  25. Rajamaki ML, Valkonen JP (2009) Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. Plant Cell 21:2485–2502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol 5:635–642

    Article  CAS  PubMed  Google Scholar 

  27. Salvetti A, Greco A (2014) Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta 1842:840–847

    Article  CAS  PubMed  Google Scholar 

  28. Sorokin AV, Kim ER, Ovchinnikov LP (2007) Nucleocytoplasmic transport of proteins. Biochemistry. Biokhimiia 72:1439–1457

    Article  CAS  Google Scholar 

  29. Vazquez-Iglesias L, Lostale-Seijo I, Martinez-Costas J, Benavente J (2009) Avian reovirus sigmaA localizes to the nucleolus and enters the nucleus by a nonclassical energy- and carrier-independent pathway. J Virol 83:10163–10175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Weidman MK, Sharma R, Raychaudhuri S, Kundu P, Tsai W, Dasgupta A (2003) The interaction of cytoplasmic RNA viruses with the nucleus. Virus Res 95:75–85

    Article  CAS  PubMed  Google Scholar 

  31. Whittaker G, Bui M, Helenius A (1996) Nuclear trafficking of influenza virus ribonuleoproteins in heterokaryons. J Virol 70:2743–2756

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Songshu Meng at Dalian Medical University for suggestions. This work was financially supported by the National Natural Science Foundation of China (31272576), the China Agriculture Research System (CARS-41-K08), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wei, H., Yu, L. et al. Nuclear localization of the p17 protein of avian reovirus is correlated with autophagy induction and an increase in viral replication. Arch Virol 160, 3001–3010 (2015). https://doi.org/10.1007/s00705-015-2598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2598-5

Keywords

Navigation