Skip to main content

Advertisement

Log in

Dengue virus infection induces formation of G3BP1 granules in human lung epithelial cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Cells reprogram ongoing translation in response to viral infection, resulting in formation of stress granules (SGs), while viruses have evolved a variety of strategies to antagonize the host SG response. Previous literature reported that in BHK-1 cells, infection with dengue virus (DENV) interfered with the SG formation. In the current study, we further investigated SG formation in human epithelial A549 cells by detecting subcellular localization of two SG hallmarks, TIA-1 and G3BP1. In response to DENV type 2 (DENV2) and type 3 (DENV3) infection, G3BP1, but not TIA-1, was recruited into cytoplasmic granules in some cells, and viral protein synthesis was significantly impaired in the G3BP1-granule-containing cells. Knockdown of G3BP1 significantly rescued the dsRNA-mediated suppression of DENV2 replication. Furthermore, our data showed that the phosphorylation of protein kinase regulated by dsRNA (PKR) and eIF2α, as well as accumulation of dsRNA, mainly occurred at the late stage of viral infection. This work revealed that in DENV-infected A549 cells, G3BP1 granules were assembled independently of TIA-1 and had a negative impact on viral replication. This extends our understanding of the antagonistic relationship between the SG response and dengue virus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson P, Kedersha N (2006) RNA granules. J Cell Biol 172(6):803–808. doi:10.1083/jcb.200512082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Anderson P, Kedersha N (2002) Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7(2):213–221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33(3):141–150

    Article  CAS  PubMed  Google Scholar 

  4. Ohn T, Anderson P (2010) The role of posttranslational modifications in the assembly of stress granules. Wiley Interdiscip Rev 1(3):486–493

    Article  CAS  Google Scholar 

  5. Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M (2008) Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 10(11):1324–1332. doi:10.1038/ncb1791

    Article  CAS  PubMed  Google Scholar 

  6. Emara MM, Brinton MA (2007) Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc Natl Acad Sci USA 104(21):9041–9046. doi:10.1073/pnas.0703348104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Beckham CJ, Parker R (2008) P bodies, stress granules, and viral life cycles. Cell Host Microbe 3(4):206–212. doi:10.1016/j.chom.2008.03.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Khaperskyy DA, Hatchette TF, McCormick C (2012) Influenza A virus inhibits cytoplasmic stress granule formation. FASEB J 26(4):1629–1639. doi:10.1096/fj.11-196915

    Article  CAS  PubMed  Google Scholar 

  9. Lloyd RE (2013) Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA 4(3):317–331. doi:10.1002/wrna.1162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. White JP, Lloyd RE (2012) Regulation of stress granules in virus systems. Trends Microbiol 20(4):175–183. doi:10.1016/j.tim.2012.02.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Simmons CP, Farrar JJ, Nguyen VV, Wills B (2012) Dengue. N Engl J Med 366(15):1423–1432. doi:10.1056/NEJMra1110265

    Article  CAS  PubMed  Google Scholar 

  12. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11(3):480–496

    PubMed Central  CAS  PubMed  Google Scholar 

  13. McBride WJ, Bielefeldt-Ohmann H (2000) Dengue viral infections; pathogenesis and epidemiology. Microbes Infect 2(9):1041–1050

    Article  CAS  PubMed  Google Scholar 

  14. Halstead SB (2007) Dengue. Lancet 370(9599):1644–1652. doi:10.1016/S0140-6736(07)61687-0

    Article  PubMed  Google Scholar 

  15. Morrison J, Aguirre S, Fernandez-Sesma A (2012) Innate immunity evasion by dengue virus. Viruses 4(3):397–413. doi:10.3390/v4030397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Green AM, Beatty PR, Hadjilaou A, Harris E (2014) Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 426(6):1148–1160. doi:10.1016/j.jmb.2013.11.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mazroui R, Sukarieh R, Bordeleau ME, Kaufman RJ, Northcote P, Tanaka J, Gallouzi I, Pelletier J (2006) Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2α phosphorylation. Mol Biol Cell 17(10):4212–4219. doi:10.1091/mbc.E06-04-0318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Li Y, Xie J, Wu S, Xia J, Zhang P, Liu C, Huang X (2013) Protein kinase regulated by dsRNA downregulates the interferon production in dengue virus- and dsRNA-stimulated human lung epithelial cells. PLoS One 8(1):e55108. doi:10.1371/journal.pone.0055108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li Y, Wu S, Pu J, Huang X, Zhang P (2015) Dengue virus up-regulates expression of notch ligands Dll1 and Dll4 through interferon-beta signalling pathway. Immunology 144(1):127–138. doi:10.1111/imm.12357

    Article  CAS  PubMed  Google Scholar 

  20. Chen CL, Lin CF, Wan SW, Wei LS, Chen MC, Yeh TM, Liu HS, Anderson R, Lin YS (2013) Anti-dengue virus nonstructural protein 1 antibodies cause NO-mediated endothelial cell apoptosis via ceramide-regulated glycogen synthase kinase-3β and NF-κB activation. J Immunol 191(4):1744–1752. doi:10.4049/jimmunol.1201976

    Article  CAS  PubMed  Google Scholar 

  21. Zhang P, Li Y, Xia J, He J, Pu J, Xie J, Wu S, Feng L, Huang X, Zhang P (2014) IPS-1 plays an essential role in dsRNA-induced stress granule formation by interacting with PKR and promoting its activation. J Cell Sci 127(Pt 11):2471–2482. doi:10.1242/jcs.139626

    Article  CAS  PubMed  Google Scholar 

  22. Bidet K, Dadlani D, Garcia-Blanco MA (2014) G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathog 10(7):e1004242. doi:10.1371/journal.ppat.1004242

    Article  PubMed Central  PubMed  Google Scholar 

  23. Kimball SR, Horetsky RL, Ron D, Jefferson LS, Harding HP (2003) Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Cell Physiol 284(2):C273–C284. doi:10.1152/ajpcell.00314.2002

    Article  CAS  PubMed  Google Scholar 

  24. Pena J, Harris E (2011) Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 286(16):14226–14236. doi:10.1074/jbc.M111.222703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Umareddy I, Pluquet O, Wang QY, Vasudevan SG, Chevet E, Gu F (2007) Dengue virus serotype infection specifies the activation of the unfolded protein response. Virol J 4:91. doi:10.1186/1743-422X-4-91

    Article  PubMed Central  PubMed  Google Scholar 

  26. Paradkar PN, Ooi EE, Hanson BJ, Gubler DJ, Vasudevan SG (2011) Unfolded protein response (UPR) gene expression during antibody-dependent enhanced infection of cultured monocytes correlates with dengue disease severity. Biosci Rep 31(3):221–230. doi:10.1042/BSR20100078

    Article  CAS  PubMed  Google Scholar 

  27. Tu YC, Yu CY, Liang JJ, Lin E, Liao CL, Lin YL (2012) Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. J Virol 86(19):10347–10358. doi:10.1128/JVI.00525-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Uchida L, Espada-Murao LA, Takamatsu Y, Okamoto K, Hayasaka D, Yu F, Nabeshima T, Buerano CC, Morita K (2014) The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci Rep 4:7395. doi:10.1038/srep07395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chang HW, Jacobs BL (1993) Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Virology 194(2):537–547

    Article  CAS  PubMed  Google Scholar 

  30. Hatada E, Fukuda R (1992) Binding of influenza A virus NS1 protein to dsRNA in vitro. J Gen Virol 73(Pt 12):3325–3329

    Article  CAS  PubMed  Google Scholar 

  31. Lu Y, Wambach M, Katze MG, Krug RM (1995) Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 214(1):222–228

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81171576, 81371794), and Guangdong Natural Science Foundation (S2013010016454, 2014A030311007). The NS1 monoclonal Ab was generously provided by Prof. Trai-Ming Yeh (National Cheng Kung University, Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfang He or Ping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

J. Xia and X. Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2015_2578_MOESM1_ESM.tif

Figure S1. Time course of subcellular localization of TIA-1 and G3BP1 in mock-infected cells. A549 cells were mock infected, harvested at the indicated times, and processed for IFM using anti-TIA-1 (green) and anti-NS1(red) (A) or anti-G3BP1 (red) and anti-NS-1 (green) (B). The images are representative of three independent experiments. Scale bars: 10 μm (TIFF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, J., Chen, X., Xu, F. et al. Dengue virus infection induces formation of G3BP1 granules in human lung epithelial cells. Arch Virol 160, 2991–2999 (2015). https://doi.org/10.1007/s00705-015-2578-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2578-9

Keywords

Navigation