Skip to main content
Log in

Efficacy of scallop shell powders and slaked lime for inactivating avian influenza virus under harsh conditions

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The efficacy and stability of scallop shell powder (SSP) were investigated, in terms of its capacity to inactivate avian influenza virus (AIV), and compared with slaked lime (SL). An environmental simulation was conducted by emulating sunlight and wet-dry conditions. The powders were collected at consecutive 2-week intervals under sunlight and upon every resuspension. These materials were tested by mixing them with AIV and incubating the mixture for 3 min or 20 h, followed by AIV titration. At the same time, a pH buffering test was conducted by neutralization with Tris-HCl. The results revealed that SSP and SL have high alkalinity and excellent ability to inactivate AIV. In a simulated harsh environment, SSP and SL retained a satisfactory ability to inactivate AIV within 20 h throughout the experimental procedure. However, SSP was able to inactivate AIV during a short contact period (3 min), even under harsh conditions, and it was more resistant than SL to neutralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Brown JD, Swayne DE, Cooper RJ, Burns RE, Stallknecht DE (2007) Persistence of H5 and H7 avian influenza viruses in water. Avian Dis 51:285–289

    Article  PubMed  Google Scholar 

  2. Brown JD, Goekjian G, Poulson R, Valeika S, Stallknecht DE (2009) Avian influenza virus in water: infectivity is dependent on pH, salinity and temperature. Vet Microbiol 136:20–26

    Article  PubMed  Google Scholar 

  3. El-Zoghby EF, Arafa A-S, Kilany WH, Aly MM, Abdelwhab EM, Hafez HM (2012) Isolation of avian influenza H5N1 virus from vaccinated commercial layer flock in Egypt. Virol J 9:294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Escorcia M, Vazquez L, Mendez ST, Rodriguez-Ropon A, Lucio E, Nava GM (2008) Avian influenza: genetic evolution under vaccination pressure. Virol J 5:15

    Article  PubMed Central  PubMed  Google Scholar 

  5. Fuller TL, Saatchi SS, Curd EE, Toffelmier E, Thomassen HA, Buermann W, DeSante DF, Nott MP, Saracco JF, Ralph C, Alexander JD, Pollinger JP, Smith TB (2010) Mapping the risk of avian influenza in wild birds in the US. BMC Infect Dis 10:187

    Article  PubMed Central  PubMed  Google Scholar 

  6. Gaidet N, Cattoli G, Hammoumi S, Newman SH, Hagemeijer W, Takekawa JY, Cappelle J, Dodman T, Joannis T, Gil P, Monne I, Fusaro A, Capua I, Manu S, Micheloni P, Ottosson U, Mshelbwala JH, Lubroth J, Domenech J, Monicat F (2008) Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog 4:e1000127

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hansbro PM, Warner S, Tracey JP, Arzey KE, Selleck P, O’Riley K, Beckett EL, Bunn C, Kirkland PD, Vijaykrishna D, Olsen B, Hurt AC (2010) Surveillance and analysis of avian influenza viruses, Australia. Emerg Infect Dis 16:1896–1904

    Article  PubMed Central  PubMed  Google Scholar 

  8. Henaux V, Samuel MD, Dusek RJ, Fleskes JP, Ip HS (2012) Presence of avian influenza viruses in waterfowl and wetlands during summer 2010 in California: are resident birds a potential reservoir? PLoS One 7:e31471

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ito T, Okazaki K, Kawaoka Y, Takada A, Webster RG, Kida H (1995) Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch Virol 140:1163–1172

    Article  CAS  PubMed  Google Scholar 

  10. Jahangir A, Ruenphet S, Ueda S, Ueno Y, Shoham D, Shindo J, Okamura M, Nakamura M, Takehara K (2009) Avian influenza and Newcastle disease viruses from northern pintail in Japan: isolation, characterization and inter-annual comparisons during 2006-2008. Virus Res 143:44–52

    Article  CAS  PubMed  Google Scholar 

  11. Jahangir A, Ruenphet S, Shoham D, Okamura M, Nakamaura M, Takehara K (2010) Haemagglutinin and neuraminidase characterization of low pathogenic H5 and H7 avian influenza viruses isolated from Northern pintails (Anas acuta) in Japan, with special reference to genomic and biogeographical aspects. Virus Genes 40:94–105

    Article  CAS  PubMed  Google Scholar 

  12. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008) Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87:2798–2806

    Article  CAS  Google Scholar 

  13. Lebarbenchon C, Feare CJ, Renaud F, Thomas F, Gauthier-Clerc M (2010) Persistence of highly pathogenic avian influenza viruses in natural ecosystems. Emerg Infect Dis 16:1057–1062

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lee CW, Senne DA, Suarez DL (2004) Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol 78:8372–8381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Li XH, Tian HD, Heiner M, Li DM (2011) Global occurrence and spread of highly pathogenic avian influenza virus of the subtype H5N1. Avian Dis 55:21–28

    Article  PubMed  Google Scholar 

  16. Lombardi ME, Ladman BS, Alphin RL, Benson ER (2008) Inactivation of avian influenza virus using common detergents and chemicals. Avian Dis 52:118–123

    Article  CAS  PubMed  Google Scholar 

  17. Matumoto M (1949) A note on some points of calculation method of LD50 by Reed Muench. Jpn J Exp Med 20:175–179

    CAS  PubMed  Google Scholar 

  18. Muhmmad K, Das P, Yaqoob T, Riaz A, Manzoor R (2001) Effect of physico-chemical factors on survival of avian influenza virus (H7N3 type). Int J Agric Biol 3:416–418

    Google Scholar 

  19. Nazir J, Haumacher R, Ike AC, Marschang RE (2011) Persistence of avian influenza viruses in lake sediment, duck feces, and duck meat. Appl Environ Microbiol 77:4981–4985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Pearce JM, Ramey AM, Flint PL, Koehler AV, Fleskes JP, Franson JC, Hall JS, Derksen DV, Ip HS (2009) Avian influenza at both ends of a migratory flyway: characterizing viral genomic diversity to optimize surveillance plans for North America. Evol Appl 2:457–468

    Article  PubMed Central  PubMed  Google Scholar 

  21. Pearce JM, Ruthrauff DR, Hall JS (2012) Paired serologic and polymerase chain reaction analyses of avian influenza prevalence in Alaskan shorebirds. J Wildl Dis 48:812–814

    Article  PubMed  Google Scholar 

  22. Pfeiffer J, Suarez DL, Sarmento L, To TL, Nguyen T, Pantin-Jackwood MJ (2010) Efficacy of commercial vaccines in protecting chickens and ducks against H5N1 highly pathogenic avian influenza viruses from vietnam. Avian Dis 54:262–271

    Article  PubMed  Google Scholar 

  23. Puri A, Body FP, Doms RW, White JM, Blumenthal R (1990) Conformational changes and fusion activity of influenza virus hemagglutinin of the H2 and H3 subtypes: effects of acid pretreatment. J Virol 64:3824–3832

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Qiao C, Tian G, Jiang Y, Li Y, Shi J, Yu K, Chen H (2006) Vaccines developed for H5 highly pathogenic avian influenza in China. Ann N Y Acad Sci 1081:182–192

    Article  PubMed  Google Scholar 

  25. Shahid MA, Abubakar M, Hameed S, Hassan S (2009) Avian influenza virus (H5N1); effects of physico-chemical factors on its survival. Virol J 6:38

    Article  PubMed Central  PubMed  Google Scholar 

  26. Shoham D, Jahangir A, Ruenphet S, Takehara K (2012) Persistence of avian influenza viruses in various artificially frozen environmental water types. Influenza Res Treat 2012:912326

    PubMed Central  PubMed  Google Scholar 

  27. Sims LD (2007) Lessons learned from asian H5N1 outbreak control. Avian Dis 51:174–181

    Article  CAS  PubMed  Google Scholar 

  28. Swayne DE, Pavade G, Hamilton K, Vallat B, Miyagishima K (2011) Assessment of national strategies for control of high-pathogenicity avian influenza and lowpathogenicity notifiable avian influenza in poultry, with emphasis on vaccines and vaccination. Rev Sci Tech Off Int Epiz 30:839–870

    CAS  Google Scholar 

  29. Takehara K, Chinen O, Jahangir A, Miyoshi Y, Ueno Y, Ueda S, Takada Y, Ruenphet S, Mutoh K, Okamura M, Nakamura M (2009) Ceramic powder made from chicken feces: anti-viral effects against avian influenza viruses. Avian Dis 53:34–38

    Article  PubMed  Google Scholar 

  30. Thammakarn C, Satoh K, Suguro A, Hakim H, Ruenphet S, Takehara K (2014) Inactivation of avian influenza virus, newcastle disease virus and goose parvovirus using solution of nano-sized scallop shell powder. J Vet Med Sci 76:1277–1280

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tsujimura M, Thammakarn C, Yamada Y, Satoh K, Hasegawa T, Ruenphet S, Takehara K (2012) Antiviral activity of scallop-shell powder against avian influenza virus and goose parvovirus. Trans Mat Res Soc Jpn 37:567–570

    Article  Google Scholar 

  32. Wanaratana S, Tantilertcharoen R, Sasipreeyajan J, Pakpinyo S (2010) The inactivation of avian influenza virus subtype H5N1 isolated from chickens in Thailand by chemical and physical treatments. Vet Microbiol 140:43–48

    Article  CAS  PubMed  Google Scholar 

  33. Zhang P, Tang Y, Liu X, Peng D, Liu W, Liu H, Lu S, Liu X (2008) Characterization of H9N2 influenza viruses isolated from vaccinated flocks in an integrated broiler chicken operation in eastern China during a 5 year period (1998-2002). J Gen Virol 89:3102–3112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C&C Co., Ltd. for providing SSP for this experiment, as well as Dr. Dany Shoham, Bar Ilan University, Israel, for the grammatical review of the manuscript. This work was supported in part by a grant in aid from Kieikai Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Takehara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thammakarn, C., Tsujimura, M., Satoh, K. et al. Efficacy of scallop shell powders and slaked lime for inactivating avian influenza virus under harsh conditions. Arch Virol 160, 2577–2581 (2015). https://doi.org/10.1007/s00705-015-2517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2517-9

Keywords

Navigation