Skip to main content

Advertisement

Log in

Modulation of proinflammatory NF-κB signaling by ectromelia virus in RAW 264.7 murine macrophages

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Macrophages are antigen-presenting cells (APCs) that play a crucial role in the innate immune response and may be involved in both clearance and spread of viruses. Stimulation of macrophages via Toll-like receptors (TLRs) results in activation of nuclear factor κB (NF-κB) and synthesis of proinflammatory cytokines. In this work, we show modulation of proinflammatory NF-κB signaling by a member of the family Poxviridae, genus Orthopoxvirus – ectromelia virus (ECTV) – in RAW 264.7 murine macrophages. ECTV interfered with p65 NF-κB nuclear translocation induced by TLR ligands such as lipopolysaccharide (LPS) (TLR4), polyinosinic-polycytidylic acid (poly(I:C)) (TLR3) and diacylated lipopeptide Pam2CSK4 (TLR2/6). We observed that ECTV modulates phosphorylation of Ser32 of inhibitor of κB (IκBα) and Ser536 of p65. Interference of ECTV with TLR signaling pathways implied that proinflammatory cytokine synthesis was inhibited. Our studies provide new insights into the strategies of proinflammatory signaling modulation by orthopoxviruses during their replication cycle in immune cells. Understanding important immune interactions between viral pathogens and APCs might contribute to the identification of drug targets and the development of vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alzhanova D, Früh K (2010) Modulation of the host immune response by cowpox virus. Microbes Infect 12:900–909. doi:10.1016/j.micinf.2010.07.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Brady G, Bowie AG (2014) Innate immune activation of NFκB and its antagonism by poxviruses. Cytokine Growth Factor Rev 25:611–620. doi:10.1016/j.cytogfr.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  3. Burles K, van Buuren N, Barry M (2014) Ectromelia virus encodes a family of Ankyrin/F-box proteins that regulate NFκB. Virology 468–470:351–362. doi:10.1016/j.virol.2014.08.030

    Article  PubMed  Google Scholar 

  4. Chen N, Danila MI, Feng Z, Buller RM, Wang C, Han X, Lefkowitz EJ, Upton C (2003) The genomic sequence of ectromelia virus, the causative agent of mousepox. Virology 317:165–186. doi:10.1016/S0042-6822(03)00520-8

    Article  CAS  PubMed  Google Scholar 

  5. Chen RAJ, Ryzhakov G, Cooray S, Randow F, Smith GL (2008) Inhibition of IκB kinase by vaccinia virus virulence factor B14. PLoS Pathog 4:22. doi:10.1371/journal.ppat.0040022

    Article  CAS  Google Scholar 

  6. Cymerys J, Krzyzowska M, Spohr I, Winnicka A, Niemialtowski M (2009) Hsp-27, hsp-70 and hsp-90 expression and apoptosis in macrophages during ectromelia (mousepox) virus infection. Centr Eur J Immunol 34:20–28

    CAS  Google Scholar 

  7. Deng L, Dai P, Ding W, Granstein RD, Shuman S (2006) Vaccinia virus infection attenuates immune responses and antigen presentation by epidermal dendritic cells. J Virol 80:9977–9987. doi:10.1128/JVI.00354-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Diel DG, Luo S, Delhon G, Peng Y, Flores EF, Rock DL (2011) Orf virus ORFV121 encodes a novel inhibitor of NF-κB that contributes to virus virulence. J Virol 85:2037–2049. doi:10.1128/JVI.02236-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. DiPerna G, Stack J, Bowie AG, Boyd A, Kotwal G, Zhang Z, Arvikar S, Latz E, Fitzgerald KA, Marshall WL (2004) Poxvirus protein N1L targets the IκB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by toll-like receptors. J Biol Chem 279:36570–36578. doi:10.1074/jbc.M400567200

    Article  CAS  PubMed  Google Scholar 

  10. Draper SJ, Cottingham MG, Gilbert SC (2013) Utilizing poxviral vectored vaccines for antibody induction-progress and prospects. Vaccine 31:4223–4230. doi:10.1016/j.vaccine.2013.05.091

    Article  CAS  PubMed  Google Scholar 

  11. Fu Y, Ishii KK, Munakata Y, Saitoh T, Kaku M, Sasaki T (2002) Regulation of tumor necrosis factor alpha promoter by human parvovirus b19 ns1 through activation of AP-1 and AP-2. J Virol 76:5395–5403. doi:10.1128/JVI.76.11.5395-5403.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abrescia NG, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM (2008) Vaccinia virus proteins A52 and B14 share a Bcl-2-like fold but have evolved to inhibit NF-κB rather than apoptosis. PLoS Pathog 4:e1000128. doi:10.1371/journal.ppat.1000128

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gratz MS, Suezer Y, Kremer M, Volz A, Majzoub M, Hanschmann KM, Kalinke U, Schwantes A, Sutter G (2011) N1L is an ectromelia virus virulence factor and essential for in vivo spread upon respiratory infection. J Virol 85:3557–3569. doi:10.1128/JVI.01191-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hayden MS, Ghosh S (2011) NF-κB in immunobiology. Cell Res 21:223–244. doi:10.1038/cr.2011.13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Huang J, Huang Q, Zhou X, Shen MM, Yen A, Yu SX, Dong G, Qu K, Huang P, Anderson EM, Daniel-Issakani S, Buller RM, Payan DG, Lu HH (2004) The poxvirus p28 virulence factor is an E3 ubiquitin ligase. J Biol Chem 279:54110–54116. doi:10.1074/jbc.M410583200

    Article  CAS  PubMed  Google Scholar 

  16. Karupiah G, Buller RML, van Rooijen N, Duarte CJ, Chen J (1996) Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J Virol 70:8301–8309

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Knipe DM, Howley P (2013) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  18. Li J, Lee DS, Madrenas J (2013) Evolving bacterial envelopes and plasticity of TLR2-dependent responses: basic research and translational opportunities. Front Immunol 4:347. doi:10.3389/fimmu.2013.00347

    PubMed Central  PubMed  Google Scholar 

  19. Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F, Verma IM (2005) Enhanced NF-κB activation and cellular function in macrophages lacking IκB kinase 1 (IKK1). Proc Natl Acad Sci USA 102:12425–12430. doi:10.1073/pnas.0505997102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, Monie T, Bowie AG (2010) Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol 185:4261–4271. doi:10.4049/jimmunol.1002013

    Article  CAS  PubMed  Google Scholar 

  21. Mann BA, Huang JH, Li P, Chang HC, Slee RB, O’Sullivan A, Anita M, Yeh N, Klemsz MJ, Brutkiewicz RR, Blum JS, Kaplan MH (2008) Vaccinia virus blocks Stat1-dependent and Stat1-independent gene expression induced by type I and type II interferons. J Interferon Cytokine Res 28:367–380. doi:10.1089/jir.2007.0113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Martyniszyn L, Szulc-Dabrowska L, Boratynska-Jasinska A, Struzik J, Winnicka A, Niemialtowski M (2013) Crosstalk between autophagy and apoptosis in RAW 264.7 macrophages infected with ectromelia orthopoxvirus. Viral Immunol 26:322–335. doi:10.1089/vim.2013.0003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Mercer J, Greber UF (2013) Virus interactions with endocytic pathways in macrophages and dendritic cells. Trends Microbiol 21:380–388. doi:10.1016/j.tim.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  24. Mims CA (1959) The response of mice to large intravenous injections of ectromelia virus. II. The growth of virus in the liver. Br J Exp Pathol 40:543–550

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Mohamed MR, Rahman MM, Lanchbury JS, Shattuck D, Neff C, Dufford M, van Buuren N, Fagan K, Barry M, Smith S, Damon I, McFadden G (2009) Proteomic screening of variola virus reveals a unique NF-κB inhibitor that is highly conserved among pathogenic orthopoxviruses. Proc Natl Acad Sci USA 106:9045–9050. doi:10.1073/pnas.0900452106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Najarro P, Traktman P, Lewis JA (2001) Vaccinia virus blocks gamma interferon signal transduction: viral VH1 phosphatase reverses Stat1 activation. J Virol 75:3185–3196. doi:10.1128/JVI.75.7.3185-3196.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Nerenberg BT, Taylor J, Bartee E, Gouveia K, Barry M, Früh K (2005) The poxviral RING protein p28 is a ubiquitin ligase that targets ubiquitin to viral replication factories. J Virol 79:597–601. doi:10.1128/JVI.79.1.597-601.2005

    Article  CAS  PubMed  Google Scholar 

  28. Oeckinghaus A, Ghosh S (2009) The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034. doi:10.1101/cshperspect.a000034

    Article  PubMed Central  PubMed  Google Scholar 

  29. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708. doi:10.1038/ni.2065

    Article  CAS  PubMed  Google Scholar 

  30. Pagliari LJ, Perlman H, Liu H, Pope RM (2000) Macrophages require constitutive NF-κB activation to maintain A1 expression and mitochondrial homeostasis. Mol Cell Biol 20:8855–8865. doi:10.1128/MCB.20.23.8855-8865.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Paran N, Lustig S, Zvi A, Erez N, Israely T, Melamed S, Politi B, Ben-Nathan D, Schneider P, Lachmi B, Israeli O, Stein D, Levin R, Olshevsky U (2013) Active vaccination with vaccinia virus A33 protects mice against lethal vaccinia and ectromelia viruses but not against cowpoxvirus; elucidation of the specific adaptive immune response. Virol J 10:229. doi:10.1186/1743-422X-10-229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Parker S, Siddiqui AM, Painter G, Schriewer J, Buller RM (2010) Ectromelia virus infections of mice as a model to support the licensure of anti-orthopoxvirus therapeutics. Viruses 2:1918–1932. doi:10.3390/v2091918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Riedel S (2005) Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 18:21–25

    Google Scholar 

  34. Royo S, Sainz B Jr, Hernández-Jiménez E, Reyburn H, López-Collazo E, Guerra S (2014) Differential induction of apoptosis, interferon signaling, and phagocytosis in macrophages infected with a panel of attenuated and nonattenuated poxviruses. J Virol 88:5511–5523. doi:10.1128/JVI.00468-14

    Article  PubMed Central  PubMed  Google Scholar 

  35. Rubio D, Xu RH, Remakus S, Krouse TE, Truckenmiller ME, Thapa RJ, Balachandran S, Alcami A, Norbury CC, Sigal LJ (2013) Crosstalk between the type 1 interferon and nuclear factor κB pathways confers resistance to a lethal virus infection. Cell Host Microbe 13:701–710. doi:10.1016/j.chom.2013.04.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sasaki CY, Barberi TJ, Ghosh P, Longo DL (2005) Phosphorylation of RelA/p65 on serine 536 defines an IκBα-independent NF-κB pathway. J Biol Chem 280:34538–34547. doi:10.1074/jbc.M504943200

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt FI, Bleck CK, Reh L, Novy K, Wollscheid B, Helenius A, Stahlberg H, Mercer J (2013) Vaccinia virus entry is followed by core activation and proteasome-mediated release of the immunomodulatory effector VH1 from lateral bodies. Cell Rep 4:464–476. doi:10.1016/j.celrep.2013.06.028

    Article  CAS  PubMed  Google Scholar 

  38. Shisler JL, Jin XL (2004) The vaccinia virus K1L gene product inhibits host NF-κB activation by preventing IκBα degradation. J Virol 78:3553–3560. doi:10.1128/JVI.78.7.3553-3560.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Smith GL, Benfield CT, Maluquer de Motes C, Mazzon M, Ember SW, Ferguson BJ, Sumner RP (2013) Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol 94:2367–2392. doi:10.1099/vir.0.055921-0

    Article  CAS  PubMed  Google Scholar 

  40. Smith VP, Alcami A (2000) Expression of secreted cytokine and chemokine inhibitors by ectromelia virus. J Virol 74:8460–8471. doi:10.1128/JVI.74.18.8460-8471.2000

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Stack J, Bowie AG (2012) Poxviral protein A46 antagonizes Toll-like receptor 4 signaling by targeting BB loop motifs in Toll-IL-1 receptor adaptor proteins to disrupt receptor:adaptor interactions. J Biol Chem 287:22672–22682. doi:10.1074/jbc.M112.349225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Stanford MM, McFadden G, Karupiah G, Chaudhri G (2007) Immunopathogenesis of poxvirus infections: forecasting the impending storm. Immunol Cell Biol 85:93–102. doi:10.1038/sj.icb.7100033

    Article  CAS  PubMed  Google Scholar 

  43. Unterholzner L, Bowie AG (2008) The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochem Pharmacol 75:589–602. doi:10.1016/j.bcp.2007.07.043

    Article  CAS  PubMed  Google Scholar 

  44. van Buuren N, Burles K, Schriewer J, Mehta N, Parker S, Buller RM, Barry M (2014) EVM005: an ectromelia-encoded protein with dual roles in NF-κB inhibition and virulence. PLoS Pathog 10:e1004326. doi:10.1371/journal.ppat.1004326

    Article  PubMed Central  PubMed  Google Scholar 

  45. van Buuren N, Couturier B, Xiong Y, Barry M (2008) Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex. J Virol 82:9917–9927. doi:10.1371/journal.ppat.1004326

    Article  PubMed Central  PubMed  Google Scholar 

  46. Verardi PH, Titong A, Hagen CJ (2012) A vaccinia virus renaissance: new vaccine and immunotherapeutic uses after smallpox eradication. Hum Vaccin Immunother 8:961–970. doi:10.4161/hv.21080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Volz A, Sutter G (2013) Protective efficacy of Modified Vaccinia virus Ankara in preclinical studies. Vaccine 31:4235–4240. doi:10.1016/j.vaccine.2013.03.016

    Article  CAS  PubMed  Google Scholar 

  48. Wang Q, Burles K, Couturier B, Randall CM, Shisler J, Barry M (2014) Ectromelia virus encodes a BTB/kelch protein, EVM150, that inhibits NF-κB signaling. J Virol 88:4853–4865. doi:10.1128/JVI.02923-13

    Article  PubMed Central  PubMed  Google Scholar 

  49. Wilton BA, Campbell S, van Buuren N, Garneau R, Furukawa M, Xiong Y, Barry M (2008) Ectromelia virus BTB/kelch proteins, EVM150 and EVM167, interact with cullin-3-based ubiquitin ligases. Virology 374:82–99. doi:10.1016/j.virol.2007.11.036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Yang F, Tang E, Guan K, Wang CY (2003) IKKβ plays and essential role in the phosphorylation of RelA/p65 on serine-536 induced by lipopolysaccharide. J Immunol 170:5630–5635. doi:10.4049/jimmunol.170.11.5630

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Z, Abrahams MR, Hunt LA, Suttles J, Marshall W, Lahiri DK, Kotwal GJ (2005) The vaccinia virus N1L protein influences cytokine secretion in vitro after infection. Ann N Y Acad Sci 1056:69–86. doi:10.1196/annals.1352.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Felix N. Toka (from WULS-SGGW) for help with manuscript editing. This work was supported by Grant No. N N308573740 (for M.N.) from the Ministry of Science and Higher Education in Warsaw, Grant No. 2011/03/B/NZ6/03856 (for M.N.) from National Science Center in Cracow and internal research Grant No. 505 1002340034 (for L.S.D.) and No. 505 1002340050 (for J.S.) from WULS-SGGW in Warsaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidia Szulc-Dąbrowska.

Ethics declarations

No conflict of interest declared.

Additional information

J. Struzik and L. Szulc-Dąbrowska contributed equally to this study.

M. Niemiałtowski: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struzik, J., Szulc-Dąbrowska, L., Papiernik, D. et al. Modulation of proinflammatory NF-κB signaling by ectromelia virus in RAW 264.7 murine macrophages. Arch Virol 160, 2301–2314 (2015). https://doi.org/10.1007/s00705-015-2507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2507-y

Keywords

Navigation