Archives of Virology

, Volume 160, Issue 9, pp 2353–2358 | Cite as

Repurposing of rutin for the inhibition of norovirus replication

  • Nicolas Chéron
  • Chenchen Yu
  • Abimbola O. Kolawole
  • Eugene I. Shakhnovich
  • Christiane E. Wobus
Brief Report


Drug repurposing is a strategy employed to circumvent some of the bottlenecks involved in drug development, such as the cost and time needed for developing new molecular entities. Noroviruses cause recurrent epidemics and sporadic outbreaks of gastroenteritis associated with significant mortality and economic costs, but no treatment has been approved to date. Herein, a library of molecules previously used in humans was screened to find compounds with anti-noroviral activity. Antiviral testing for four selected compounds against murine norovirus infection revealed that rutin has anti-murine norovirus activity in cell-based assays.


Rutin Suramin Antiviral Efficacy Kasugamycin Rutinose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Defense Advanced Research Projects Agency (DARPA) Contract HR0011-11-C-0093. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors thank Audrey E. Fischer, Joshua T. Wolfe, Jeffrey S. Lin, and Andrew B. Feldman from the Applied Physics Laboratory of Johns Hopkins University (MD, USA) for helpful discussions. We also thank Xiaoyan Lin and Emma Winkler at Indiana University for performing the RdRp assays, and David George at Kansas State University for performing the protease assay. The computations performed herein were run on the Odyssey cluster supported by the FAS Division of Science, Research Computing Group at Harvard University.


  1. 1.
    Arias A, Emmott E, Vashist S, Goodfellow I (2013) Progress towards the prevention and treatment of norovirus infections. Futur Microbiol 8:1475–1487CrossRefGoogle Scholar
  2. 2.
    Blanton LH, Adams SM, Beard RS, Wei G, Bulens SN, Widdowson MA, Glass RI, Monroe SS (2006) Molecular and epidemiologic trends of caliciviruses associated with outbreaks of acute gastroenteritis in the United States, 2000–2004. J Infect Dis 193:413–421CrossRefPubMedGoogle Scholar
  3. 3.
    Butler M, Ng CY, van Heel DA, Lombardi G, Lechler R, Playford RJ, Ghosh S (2006) Modulation of dendritic cell phenotype and function in an in vitro model of the intestinal epithelium. Eur J Immunol 36:864–874CrossRefPubMedGoogle Scholar
  4. 4.
    Chang KO, Takahashi D, Prakash O, Kim Y (2012) Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay. Virology 423:125–133PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Cho AE, Guallar V, Berne BJ, Friesner R (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26:915–931PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Costantini VP, Whitaker T, Barclay L, Lee D, McBrayer TR, Schinazi RF, Vinje J (2012) Antiviral activity of nucleoside analogues against norovirus. Antiviral Ther 17:981–991CrossRefGoogle Scholar
  7. 7.
    Deschner EE, Ruperto JF, Wong GY, Newmark HL (1993) The effect of dietary quercetin and rutin on AOM-induced acute colonic epithelial abnormalities in mice fed a high-fat diet. Nutr Cancer 20:199–204CrossRefPubMedGoogle Scholar
  8. 8.
    Dhanak D, Duffy KJ, Johnston VK, Lin-Goerke J, Darcy M, Shaw AN, Gu B, Silverman C, Gates AT, Nonnemacher MR, Earnshaw DL, Casper DJ, Kaura A, Baker A, Greenwood C, Gutshall LL, Maley D, DelVecchio A, Macarron R, Hofmann GA, Alnoah Z, Cheng HY, Chan G, Khandekar S, Keenan RM, Sarisky RT (2002) Identification and biological characterization of heterocyclic inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J Biol Chem 277:38322–38327CrossRefPubMedGoogle Scholar
  9. 9.
    Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK (2004) Laboratory efforts to cultivate noroviruses. J Gen Virol 85:79–87CrossRefPubMedGoogle Scholar
  10. 10.
    Feng X, Jiang X (2007) Library screen for inhibitors targeting norovirus binding to histo-blood group antigen receptors. Antimicrob Agents Chemother 51:324–331PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749CrossRefPubMedGoogle Scholar
  12. 12.
    Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196CrossRefPubMedGoogle Scholar
  13. 13.
    Gonzalez-Hernandez MB, Bragazzi Cunha J, Wobus CE (2012) Plaque assay for murine norovirus. J Vis Exp 66:e4297PubMedGoogle Scholar
  14. 14.
    Gonzalez-Hernandez MJ, Pal A, Gyan KE, Charbonneau M-E, Showalter HD, Donato NJ, O’Riordan M, Wobus CE (2014) Chemical derivatives of a small molecule deubiquitinase inhibitor have antiviral activity against several RNA viruses. PLoS ONE 9:e94491PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Green KY (2014) Norovirus infection in immunocompromised hosts. Clin Microbiol Infect 20:717–723CrossRefPubMedGoogle Scholar
  16. 16.
    Guardia T, Rotelli AE, Juarez AO, Pelzer LE (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Il Farmaco 56:683–687CrossRefPubMedGoogle Scholar
  17. 17.
    Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759CrossRefPubMedGoogle Scholar
  18. 18.
    Hall AJ, Lopman BA, Payne DC, Patel MM, Gastanaduy PA, Vinje J, Parashar UD (2013) Norovirus disease in the United States. Emerg Infect Dis 19:1198–1205PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Karst SM, Wobus CE, Goodfellow IG, Green KY, Virgin HW (2014) Advances in norovirus biology. Cell Host Microbe 15:668–680PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Kim Y, Lovell S, Tiew KC, Mandadapu SR, Alliston KR, Battaile KP, Groutas WC, Chang KO (2012) Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses. J Virol 86:11754–11762PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Kinch MS, Haynesworth A, Kinch SL, Hoyer D (2014) An overview of FDA-approved new molecular entities: 1827–2013. Drug Discov Today 19:1033–1039CrossRefPubMedGoogle Scholar
  24. 24.
    Kroneman A, Vega E, Vennema H, Vinje J, White PA, Hansman G, Green K, Martella V, Katayama K, Koopmans M (2013) Proposal for a unified norovirus nomenclature and genotyping. Arch Virol 158:2059–2068CrossRefPubMedGoogle Scholar
  25. 25.
    Laufer S, Holzgrabe U, Steinhilber D (2013) Drug discovery: a modern decathlon. Angew Chem Int Ed Engl 52:4072–4076CrossRefPubMedGoogle Scholar
  26. 26.
    Lin JP, Yang JS, Lu CC, Chiang JH, Wu CL, Lin JJ, Lin HL, Yang MD, Liu KC, Chiu TH, Chung JG (2009) Rutin inhibits the proliferation of murine leukemia WEHI-3 cells in vivo and promotes immune response in vivo. Leuk Res 33:823–828CrossRefPubMedGoogle Scholar
  27. 27.
    Lin YJ, Chang YC, Hsiao NW, Hsieh JL, Wang CY, Kung SH, Tsai FJ, Lan YC, Lin CW (2012) Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J Virol Methods 182:93–98CrossRefPubMedGoogle Scholar
  28. 28.
    Mandadapu SR, Weerawarna PM, Gunnam MR, Alliston KR, Lushington GH, Kim Y, Chang KO, Groutas WC (2012) Potent inhibition of norovirus 3CL protease by peptidyl alpha-ketoamides and alpha-ketoheterocycles. Bioorg Med Chem Lett 22:4820–4826PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Mastrangelo E, Pezzullo M, Tarantino D, Petazzi R, Germani F, Kramer D, Robel I, Rohayem J, Bolognesi M, Milani M (2012) Structure-based inhibition of norovirus RNA-dependent RNA polymerases. J Mol Biol 419:198–210CrossRefPubMedGoogle Scholar
  30. 30.
    Mullard A (2012) Drug repurposing programmes get lift off. Nat Rev Drug Discov 11:505–506CrossRefPubMedGoogle Scholar
  31. 31.
    Ng KK, Pendas-Franco N, Rojo J, Boga JA, Machin A, Alonso JM, Parra F (2004) Crystal structure of norwalk virus polymerase reveals the carboxyl terminus in the active site cleft. J Biol Chem 279:16638–16645CrossRefPubMedGoogle Scholar
  32. 32.
    Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD (2008) Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14:1224–1231PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Rademacher C, Guiard J, Kitov PI, Fiege B, Dalton KP, Parra F, Bundle DR, Peters T (2011) Targeting norovirus infection-multivalent entry inhibitor design based on NMR experiments. Chemistry 17:7442–7453CrossRefPubMedGoogle Scholar
  34. 34.
    Reuters T (2012) Knowledge-based drug repositioning to drive R&D productivity. White paper. Thompson ReutersGoogle Scholar
  35. 35.
    Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators—mechanisms of action and application to clinical practice. N Engl J Med 348:618–629CrossRefPubMedGoogle Scholar
  36. 36.
    Rocha-Pereira J, Cunha R, Pinto DC, Silva AM, Nascimento MS (2010) (E)-2-styrylchromones as potential anti-norovirus agents. Bioorg Med Chem 18:4195–4201CrossRefPubMedGoogle Scholar
  37. 37.
    Rocha-Pereira J, Jochmans D, Debing Y, Verbeken E, Nascimento MS, Neyts J (2013) The viral polymerase inhibitor 2’-C-methylcytidine inhibits Norwalk virus replication and protects against norovirus-induced diarrhea and mortality in a mouse model. J Virol 87:11798–11805PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, Jegga AG (2011) Drug repositioning for orphan diseases. Brief Bioinform 12:346–356CrossRefPubMedGoogle Scholar
  39. 39.
    Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis 17:7–15PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Subba-Reddy CV, Goodfellow I, Kao CC (2011) VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. J Virol 85:13027–13037PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    Thackray LB, Wobus CE, Chachu KA, Liu B, Alegre ER, Henderson KS, Kelley ST, Virgin HW IV (2007) Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81:10460–10473PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Tiew KC, He G, Aravapalli S, Mandadapu SR, Gunnam MR, Alliston KR, Lushington GH, Kim Y, Chang KO, Groutas WC (2011) Design, synthesis, and evaluation of inhibitors of Norwalk virus 3C protease. Bioorg Med Chem Lett 21:5315–5319PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Treanor JJ, Atmar RL, Frey SE, Gormley R, Chen WH, Ferreira J, Goodwin R, Borkowski A, Clemens R, Mendelman PM (2014) A novel intramuscular bivalent norovirus virus-like particle vaccine candidate-reactogenicity, safety, and immunogenicity in a phase 1 trial in healthy adults. J Infect Dis 210:1763–1771CrossRefPubMedGoogle Scholar
  44. 44.
    Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, Bevers TB, Fehrenbacher L, Pajon ER Jr, Wade JL 3rd, Robidoux A, Margolese RG, James J, Lippman SM, Runowicz CD, Ganz PA, Reis SE, McCaskill-Stevens W, Ford LG, Jordan VC, Wolmark N, National Surgical Adjuvant B, Bowel P (2006) Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295:2727–2741CrossRefPubMedGoogle Scholar
  45. 45.
    Wobus CE, Karst SM, Thackray LB, Chang KO, Sosnovtsev SV, Belliot G, Krug A, Mackenzie JM, Green KY, Virgin HW (2004) Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Xu K, Cote TR (2011) Database identifies FDA-approved drugs with potential to be repurposed for treatment of orphan diseases. Brief Bioinform 12:341–345CrossRefPubMedGoogle Scholar
  47. 47.
    Yanga J, Juan Guoa J, Yuan J (2008) In vitro antioxidant properties of rutin. LWT Food Sci Technol 41:1060–1066CrossRefGoogle Scholar
  48. 48.
    Yunus MA, Lin X, Bailey D, Karakasiliotis I, Chaudhry Y, Vashist S, Zhang G, Thorne L, Kao CC, Goodfellow I (2015) The murine norovirus core subgenomic RNA promoter consists of a stable stem-loop that can direct accurate initiation of RNA synthesis. J Virol 89:1218–1229PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Zamyatkin DF, Parra F, Alonso JM, Harki DA, Peterson BR, Grochulski P, Ng KK (2008) Structural insights into mechanisms of catalysis and inhibition in Norwalk virus polymerase. J Biol Chem 283:7705–7712CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations