Skip to main content

A Top Ten list for economically important plant viruses

Abstract

The concept of “Top Ten” lists of plant pathogens is in vogue in recent years, and plant viruses are no exception. However, the only list available has more to do with historical and scientific worth than it has to do with economic impact on humans and their animals. This review will discuss the most important plant viruses that cause serious harm to food plants that sustain the bulk of humankind.

This is a preview of subscription content, access via your institution.

References

  1. Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P et al (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    CAS  PubMed  Article  Google Scholar 

  2. Lane LC (1974) The bromoviruses. Adv Virus Res 19:151–220

    CAS  PubMed  Article  Google Scholar 

  3. Lane LC, Kaesberg P (1971) Multiple genetic components in bromegrass mosaic virus. Nat New Biol 232:40–43

    CAS  PubMed  Article  Google Scholar 

  4. Bujarski JJ, Dreher TW, Hall TC (1985) Deletions in the 3′-terminal transfer RNA-like structure of brome mosaic-virus RNA differentially affect aminoacylation and replication in vitro. Proc Natl Acad Sci USA 82:5636–5640

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Miller WA, Bujarski JJ, Dreher TW, Hall TC (1986) Minus-strand initiation by brome mosaic-virus replicase within the 3′ transfer RNA-like structure of native and modified RNA templates. J Mol Biol 187:537–546

    CAS  PubMed  Article  Google Scholar 

  6. Pogue GP, Hall TC (1992) The requirement for a 5′ stem-loop structure in brome mosaic-virus replication supports a new model for viral positive-strand RNA initiation. Journal of Virology 66:674–684

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Haasnoot PCJ, Olsthoorn RCL, Bol JF (2002) The Brome mosaic virus subgenomic promoter hairpin is structurally similar to the iron-responsive element and functionally equivalent to the minus-strand core promoter stem-loop C. RNA-A Publ RNA Soc 8:110–122

    CAS  Article  Google Scholar 

  8. Chen JB, Noueiry A, Ahlquist P (2003) An alternate pathway for recruiting template RNA to the brome mosaic virus RNA replication complex. J Virol 77:2568–2577

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. Yi G, Letteney E, Kim CH, Kao CC (2009) Brome mosaic virus capsid protein regulates accumulation of viral replication proteins by binding to the replicase assembly RNA element. RNA-A Publ RNA Soc 15:615–626

    CAS  Article  Google Scholar 

  10. Rybicki EP, Coyne VE (1983) Serological differentiation of brome mosaic virus morphomers. FEMS Microbiol Lett 20:103–106

    Article  Google Scholar 

  11. de Wispelaere M, Chaturvedi S, Wilkens S, Rao ALN (2011) Packaging and structural phenotype of brome mosaic virus capsid protein with altered N-terminal beta-hexamer structure. Virology 419:17–23

    PubMed  Article  Google Scholar 

  12. Perlmutter JD, Qiao C, Hagan MF (2013) Viral genome structures are optimal for capsid assembly. Elife 2:e00632

    PubMed Central  PubMed  Article  Google Scholar 

  13. Vaughan R, Tragesser B, Ni P, Ma X, Dragnea B, Kao CC (2014) The tripartite virions of the brome mosaic virus have distinct physical properties that affect the timing of the infection process. J Virol 88:6483–6491

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Rybicki EP, von Wechmar MB (1982) Characterization of an aphid-transmitted virus-disease of small grains—isolation and partial characterization of 3 viruses. J Phytopathol 103:306–322

    CAS  Article  Google Scholar 

  15. Wooley RS, Kao CC (2004) Brome mosaic virus. In: Descriptions of plant viruses. Association of Applied Biologists

  16. Rybicki EP, Pietersen G (1999) Plant virus disease problems in the developing world. Adv Virus Res 53:127–175

    CAS  PubMed  Article  Google Scholar 

  17. Legg JP, Owor B, Sseruwagi P, Ndunguru J (2006) Cassava mosaic virus disease in East and Central Africa: epidemiology and management of a regional pandemic. Adv Virus Res 67:355–418

    CAS  PubMed  Article  Google Scholar 

  18. Patil BL, Fauquet CM (2009) Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol Plant Pathol 10:685–701

    CAS  PubMed  Article  Google Scholar 

  19. Moriones E, Navas-Castillo J (2000) Tomato yellow leaf curl virus, an emerging virus complex causing epidemics worldwide. Virus Res 71:123–134

    CAS  PubMed  Article  Google Scholar 

  20. Shepherd DN, Martin DP, Van Der Walt E, Dent K, Varsani A, Rybicki EP (2010) Maize streak virus: an old and complex ‘emerging’ pathogen. Mol Plant Pathol 11:1–12

    CAS  PubMed  Article  Google Scholar 

  21. Bosque-Perez NA (2000) Eight decades of maize streak virus research. Virus Res 71:107–121

    CAS  PubMed  Article  Google Scholar 

  22. Hull R (1996) Molecular biology of rice tungro viruses. Annu Rev Phytopathol 34:275–297

    CAS  PubMed  Article  Google Scholar 

  23. Borah BK, Sharma S, Kant R, Johnson AM, Saigopal DV, Dasgupta I (2013) Bacilliform DNA-containing plant viruses in the tropics: commonalities within a genetically diverse group. Mol Plant Pathol 14:759–771

    CAS  PubMed  Article  Google Scholar 

  24. Fargette D, Konate G, Fauquet C, Muller E, Peterschmitt M, Thresh JM (2006) Molecular ecology and emergence of tropical plant viruses. Annu Rev Phytopathol 44:235–260

    CAS  PubMed  Article  Google Scholar 

  25. Hibino H (1996) Biology and epidemiology of rice viruses. Annu Rev Phytopathol 34:249–274

    CAS  PubMed  Article  Google Scholar 

  26. D’Arcy CJ, Domier LL (2005) Barley yellow dwarf. http://www.apsnet.org/edcenter/intropp/lessons/viruses/Pages/BarleyYelDwarf.aspx%5D. Accessed 13 Oct 2014

  27. Hammond RW, Kogel R, Ramirez P (1997) Variability of geographically distinct isolates of maize rayado fino virus in Latin America. J Gen Virol 78(Pt 12):3153–3159

    CAS  PubMed  Google Scholar 

  28. Loebenstein G (2012) Viruses in sweetpotato. Adv Virus Res 84:325–343

    PubMed  Article  Google Scholar 

  29. Gibson RW, Wasswa P, Tufan HA (2014) The ability of cultivars of sweetpotato in East Africa to ‘revert’ from Sweet potato feathery mottle virus infection. Virus Res 186:130–134

    CAS  PubMed  Article  Google Scholar 

  30. Dale JL (1987) Banana bunchy top: an economically important tropical plant virus disease. Adv Virus Res 33:301–325

    CAS  PubMed  Article  Google Scholar 

  31. Cook DC, Liu S, Edwards J, Villalta ON, Aurambout JP, Kriticos DJ, Drenth A, De Barro PJ (2012) Predicting the benefits of banana bunchy top virus exclusion from commercial plantations in Australia. PLoS ONE 7:e42391

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Iskra-Caruana ML, Chabannes M, Duroy PO, Muller E (2014) A possible scenario for the evolution of Banana streak virus in banana. Virus Res 186:155–162

    CAS  PubMed  Article  Google Scholar 

  33. Srivastava A, Raj SK, Haq QM, Srivastava KM, Singh BP, Sane PV (1995) Association of a cucumber mosaic virus strain with mosaic disease of banana, Musa paradisiaca—an evidence using immuno/nucleic acid probe. Indian J Exp Biol 33:986–988

    CAS  PubMed  Google Scholar 

  34. Awondo SN, Fonsah EG, Riley D, Abney M (2012) Effectiveness of tomato-spotted wilt virus management tactics. J Econ Entomol 105:943–948

    PubMed  Article  Google Scholar 

  35. Faria JC, Maxwell DP (1999) Variability in Geminivirus Isolates Associated with Phaseolus spp. in Brazil. Phytopathology 89:262–268

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

I thank Gary Foster for the discussions that led to this review being written, and Marc van Regenmortel for useful suggestions that improved it. I also thank Barbara von Wechmar for instilling the interest in the first place.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward P. Rybicki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rybicki, E.P. A Top Ten list for economically important plant viruses. Arch Virol 160, 17–20 (2015). https://doi.org/10.1007/s00705-014-2295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2295-9

Keywords

  • Sweet Potato
  • Plant Virus
  • Tomato Spotted Wilt Virus
  • Tomato Yellow Leaf
  • Maize Streak Virus