Skip to main content
Log in

Phylogenetic and recombination analysis of the homing protein domain of grapevine fanleaf virus (GFLV) isolates associated with ‘yellow mosaic’ and ‘infectious malformation’ syndromes in grapevine

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The RNA2 of seven grapevine fanleaf virus (GFLV) isolates from vines with yellow mosaic (YM) symptoms from different origin were sequenced. These sequences showed a high variability in the homing protein (2AHP) and, in five of them, a putative recombination with arabis mosaic virus (ArMV) was detected. To investigate recombination frequency, the partial sequences of the 2AHP of 28 additional GFLV isolates from nine different countries, showing either YM or infectious malformations (MF) symptoms, were obtained and compared with those of GFLV isolates from GenBank. The analysis confirmed the high level of sequence variability (up to 41 % at the nucleotide level) among isolates. In phylogenetic trees constructed using different approaches, the sequenced isolates always clustered in four conserved groups, three of which comprised YM strains (groups 1, 2 and 3), and one (group 4) the MF strains. Potential interspecific recombination sites between GFLV and ArMV were predicted in the 2AHP gene of several isolates, all of which were associated with YM symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Altschul SF, Stephen F, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  2. Andret-Link P, Laporte C, Valat L, Ritzenthaler C, Demangeat G, Vigne E, Laval V, Pfeiffer P, Stussi-Garaud C, Fuchs M (2004) Grapevine fanleaf virus: Still a major threat to the grapevine industry. J Plant Path 86:183–195

    CAS  Google Scholar 

  3. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483

    Article  PubMed  CAS  Google Scholar 

  5. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Elbeaino T, Digiaro M, Ghebremeskel S, Martelli GP (2012) Grapevine deformation virus: completion of the sequence and evidence on its origin from recombination events between grapevine fanleaf virus and arabis mosaic virus. Virus Res 166:136–140

    Article  PubMed  CAS  Google Scholar 

  7. Foissac X, Svanella-Dumas L, Dulucq MJ, Gentit P, Candresse T (2001) Polyvalent detection of fruit tree tricho, capillo and fovea viruses by nested RT-PCR using degenerated and inosine containing primers (PDO RT-PCR). Acta Hortic 550:37–43

    CAS  Google Scholar 

  8. García-Arenal F, Fraile A, Malpica JM (2001) Variability and genetic structure of plant virus populations. Ann Rev Phytopath 39:157–186

    Article  Google Scholar 

  9. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-scanning: a monte carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582

    Article  PubMed  CAS  Google Scholar 

  10. Jawhar J, Minafra A, La Notte P, Pirolo C, Saldarelli P, Boscia D, Savino V, Martelli GP (2009) Recombination events in RNA-2 of Grapevine fanleaf virus and Arabis mosaic virus in grapevines affected by yellow mosaic. In: Boudon-Padieu E. (eds) Extended abstracts 16th Meeting of International Council for the study of virus and virus-like diseases of the grapevine, Le Progrés Agricole et Viticole, Dijon France, 73–74

  11. Marck C (1988) DNA strider: a C programme for the fast analysis of DNA and protein sequences on the Apple Macintosh family computers. Nucleic Acids Res 16:1829–1836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Markoff A, Savov A, Vladimirov V, Bogdanova N, Kremensky I, Ganev V (1997) Optimization of single-strand conformation polymorphism analysis in the presence of polyethylene glycol. Clin Chem 43:30–33

    PubMed  CAS  Google Scholar 

  13. Martelli GP, Boudon-Padieu E (2006) Infectious agents of grapevine. In: Directory of infectious diseases of grapevines, Options Méditerranéennes, Série B: Studies and Research, Bari, Italy, pp 15–38

  14. Martin DP (2009) Recombination detection and analysis using RDP3. Methods Mol Biol 537:185–205

  15. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  PubMed  CAS  Google Scholar 

  16. Martins-Lopes P, Zhang H, Koebner R (2001) Detection of single nucleotide mutations in wheat using single strand conformation polymorphism gels. Plant Mol Biol Rep 19:159–162

    Article  CAS  Google Scholar 

  17. Mekuria TA, Gutha LR, Martin RR, Naidu RA (2009) Genome diversity and intra and interspecies recombination events in Grapevine fanleaf virus. Phytopathology 99:1394–1402

    Article  PubMed  CAS  Google Scholar 

  18. Naraghi-Arani P, Daubert S, Rowhani A (2001) Quasispecies nature of the genome of Grapevine fanleaf virus. J Gen Virol 82:1791–1795

    PubMed  CAS  Google Scholar 

  19. Oliver JE, Vigne E, Fuchs M (2010) Genetic structure and molecular variability of Grapevine fanleaf virus populations. Virus Res 152:30–40

    Article  PubMed  CAS  Google Scholar 

  20. Padidam M, Sawyer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225

    Article  PubMed  CAS  Google Scholar 

  21. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Perrière G, Gouy M (1996) WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie 78:364–369

    Article  PubMed  Google Scholar 

  23. Pompe-Novak M, Gutiérrez-Aguirre I, Vojvoda J, Blas M, Tomažič I, Vigne E, Fuchs M, Ravnikar M, Petrovič N (2007) Genetic variability within RNA2 of grapevine fanleaf virus. Eur J Plant Pathol 117:307–312

    Article  CAS  Google Scholar 

  24. Posada D, Crandall KA (2001) Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. Proc Natl Acad Sci USA 98:13757–13762

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Salminen M, Carr J, Burke D, McCutchan F (1995) Identification of breakpoints in intergenotypic recombinants of HIV type 1 by Bootscanning. AIDS Res Hum Retrovir 11:1423–1425

    Article  PubMed  CAS  Google Scholar 

  26. Sanfaçon H, Iwanami T, Karasev AV, Van der Vlugt R, Wellink J, Wetzel T, Yoshikawa N (2011) Family Secoviridae. In: King AMQ, Adams MJ, Carstend EB, Lefkowitz EJ (eds) Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier/Academic Press, San Diego, pp 881–899

  27. Sawyer S (1989) Statistical tests for detecting gene conversion. Mol Biol Evol 6:526–538

    PubMed  CAS  Google Scholar 

  28. Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129

    PubMed  CAS  Google Scholar 

  29. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Terlizzi F, Biolchini L, Credi R (2004) Molecular characterization of Italian grapevine fanleaf virus isolates. J Plant Pathol 86:335

    Google Scholar 

  31. Vigne E, Bergdoll M, Guyader S, Fuchs M (2004) Population structure and genetic variability within isolates of grapevine fanleaf virus from a naturally infected vineyard in France: evidence for mixed infection and recombination. J Gen Virol 85:2435–2445

    Article  PubMed  CAS  Google Scholar 

  32. Vigne E, Marmonier A, Fuchs M (2008) Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus. Arch Virol 153:1771–1776

    Article  PubMed  CAS  Google Scholar 

  33. Worobey M, Holmes EC (1999) Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80:2535–2543

    PubMed  CAS  Google Scholar 

  34. Zarghani SN, Shams-Bakhsh M, Bashir NS, Wetzel T (2013) Molecular characterization of whole genomic RNA2 from Iranian isolates of Grapevine fanleaf virus. J Phytopathol 161:419–425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toufic Elbeaino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbeaino, T., Kiyi, H., Boutarfa, R. et al. Phylogenetic and recombination analysis of the homing protein domain of grapevine fanleaf virus (GFLV) isolates associated with ‘yellow mosaic’ and ‘infectious malformation’ syndromes in grapevine. Arch Virol 159, 2757–2764 (2014). https://doi.org/10.1007/s00705-014-2138-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2138-8

Keywords

Navigation