Skip to main content

Advertisement

Log in

Thermal inactivation of Alkhumra hemorrhagic fever virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The physico-chemical and biological characteristics of Alkhumra hemorrhagic fever virus (AHFV) are not yet known. The present study describes the thermal stability of this virus at different temperatures for different periods. The kinetics of thermal inactivation were studied, linear regressions were plotted, the Arrhenius equation was applied, and the activation energy was calculated accordingly. Titers of the residual virus were determined in median tissue culture infective dose (TCID50), and the rate of destruction of infectivity at various temperatures was determined. Infectivity of AHFV was completely lost upon heating for 3 minutes at 60 °C and for 30 min at 56 °C. However, the virus could maintain 33.2 % of its titer after heating for 60 min at 45 °C and 32 % of its titer after heating for 60 min at 50 °C. In conclusion, AHFV is thermo-labile, and its inactivation follows first-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AHFV:

Alkhumra hemorrhagic fever virus

EMEM:

Eagle’s minimum essential medium

FCS:

Fetal calf serum

TCID50 :

Median tissue culture infective dose

CPE:

Cytopathic effect

References

  1. Qattan I, Akbar N, Afif H, Abu Azmah S, Al-Khateeb T, Zaki A et al (1996) A novel flavivirus: Makkah Region 1994– 1996. Saudi Epidemiol Bull 3(1):1–3 (ISSN: 1319–3965)

    Google Scholar 

  2. Madani TA (2005) Alkhumra virus infection, a new viral hemorrhagic fever in Saudi Arabia. J Infect 51(2):91–97

    Article  PubMed  Google Scholar 

  3. Madani TA, Azhar EI, Abuelzein EME, Kao M, Al-Bar HMS, Abu-Araki H et al (2011) Alkhumra (Alkhurma) virus outbreak in Najran, Saudi Arabia. J Infect 62(1):67–76

    Article  PubMed  Google Scholar 

  4. Carletti F, Castilletti C, Di Caro A, Capobianchi MR, Nisii C, Suter F et al (2010) Alkhurma hemorrhagic fever in travellers returning from Egypt, 2010. Emerg Infect Dis 16(12):1979–1982

    Article  PubMed  PubMed Central  Google Scholar 

  5. Youngner JS (1957) Thermal inactivation studies with different strains of poliovirus. J Immunol 78:282–290

    PubMed  CAS  Google Scholar 

  6. Woese C (1960) Thermal inactivation of animal viruses. Ann N Y Acad Sci 83:741–751

    Article  PubMed  CAS  Google Scholar 

  7. Koka M, Mikolajcik EM (1967) Kinetics of thermal destruction of bacteriophages active against Streptococcus cremoris. J Dairy Sci 50:1025–1031

    Article  Google Scholar 

  8. Kaplan C (1958) The heat inactivation of vaccinia virus. J Gen Microbiol 18:58–63

    Article  PubMed  CAS  Google Scholar 

  9. Hiatt CW (1964) Kinetics of the inactivation of virus. Bacteriol Rev 28:150–163

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Lo JP, Svehag SE, Gorham JR (1965) Thermostability of distemper virus and its neutralization by antibody. Acta Vet Scand 6:329–340

    PubMed  CAS  Google Scholar 

  11. Digioia GA, Licciardello JJ, Nickerson JTR, Goldblith SA (1970) Thermal inactivation of Newcastle disease virus. Appl Microbiol 19(3):454–551

    Google Scholar 

  12. Abuelzein EME (1983) Study of the thermal inactivation kinetics of the red cowpox virus and its white mutant. J Vet Res 4:13–18

    Google Scholar 

  13. Middleton JK, Severson TF, Chandran K, Gillian AL, Yin J, Nibert ML (2002) Thermostability of reovirus disassembly intermediates (ISVPs) correlates with genetic, biochemical, and thermodynamic properties of major surface protein mu1. J Virol 76(3):1051–1061

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kamolsiripichaiporn S, Subharat S, Udon R, Thongtha P, Nuanualsuwan S (2007) Thermal inactivation of foot-and mouth disease viruses in suspension. Appl Environ Microbiol 73(22):7177–7184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Chambers AE, Dixon MM, Harvey SP (2009) Studies of the suitability of fowlpox as a decontamination and thermal stability simulant for variola major. Int J Microbiol 2009:158749 (9 pages)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Heidelbaugh ND, Graves JH (1968) Effects of some techniques applicable in food processing on the infectivity of foot-and-mouth disease virus. J Food Technol 22:120–124

    CAS  Google Scholar 

  17. Thomas C, Swayne DE (2007) Thermal inactivation of H5N1 high pathogenicity avian influenza virus in naturally infected chicken meat. J Food Prot 70(3):674–680

    PubMed  Google Scholar 

  18. Rechsteiner J (1969) Thermal inactivation of respiratory syncytial virus in water and hypertonic solutions. J Gen Virol 5:397–403

    Article  CAS  Google Scholar 

  19. Hollinger FB, Dolana G, Thomas W, Gyorkey F (1984) Reduction in risk of hepatitis transmission by heat-treatment of a human factor VIII concentrate. J Infect Dis 150(2):250–262

    Article  PubMed  CAS  Google Scholar 

  20. Wiggan O, Livengood JA, Silengo SJ, Kinney RM, Osorio JE, Huang CY et al (2011) Novel formulations enhance the thermal stability of live-attenuated flavivirus vaccines. Vaccine 29(43):7456–7462

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Garcia F, Climent N, Guardo AC, Gil C (2013) A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. Sci Transl Med 5(166):166ra2

    Article  PubMed  Google Scholar 

  22. Muylaert IR, Galler R, Rice CM (1997) Genetic analysis of the yellow fever virus NS1 protein: identification of a temperature-sensitive mutation which blocks RNA accumulation. J Virol 71(1):291–298

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Brinton MA (1981) Isolation of a replication-efficient mutant of West Nile virus from a persistently infected genetically resistant mouse cell culture. J Virol 39(2):413–421

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Eastman PS, Blair CD (1985) Temperature-sensitive mutants of Japanese encephalitis virus. J Virol 55(3):611–616

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Tarr GC, Lubiniecki AS (1976) Chemically-induced temperature sensitive mutants of dengue virus type 2. I. Isolation and partial characterization. Arch Virol 50(3):223–235

    Article  PubMed  CAS  Google Scholar 

  26. Madani TA, Kao M, Azhar EI, Abuelzein EME, Al-Bar HMS, Abu-Araki H et al (2011) Successful propagation of Alkhumra (misnamed as Alkhurma) virus in C6/36 mosquito cells. Trans R Soc Trop Med Hyg 106:180–185

    Article  PubMed  Google Scholar 

  27. Reed LJ, Muench H (1983) Simple method of estimating 50 % endpoints. Am J Hyg 27:493–497

    Google Scholar 

  28. Burke DS, Monath TP (2011) Flaviviruses. In: Knipe DM, Howley PM (eds) Fields virology, 4th edn. Lippencott-Raven, Philadelphia, pp 1046–1109

    Google Scholar 

  29. Remington KM, Trego SR, Buczynski G, Li H, Osheroff WP, Brown JP et al (2004) Inactivation of West Nile virus and viral surrogates for relevant and emergent viral pathogens in plasma-derived products. Vox Sang 87:10–18

    Article  PubMed  CAS  Google Scholar 

  30. Fang Y, Brault AC, Reisen WK (2009) Short Report: Comparative thermostability of West Nile, St. Louis encephalitis, and western equine encephalomyelitis viruses during heat inactivation for serologic diagnostics. Am J Trop Med Hyg 80(5):862–863

    PubMed  Google Scholar 

  31. Song H, Li J, Shi S, Yan L, Zhuang H, Li K (2010) Thermal stability and inactivation of hepatitis C virus grown in cell culture. Virol J 7:40–51

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bachrach HL, Breese SS Jr, Callis JJ, Hess WR, Patty RE (1957) Inactivation of foot-and-mouth disease virus by pH and temperature changes and by formaldehyde. Proc Soc Exp Biol Med 95(1):147–152

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the technologist Ahmed M. Hassan for his excellent technical assistance. This work was supported by the Scientific Chair of Sheikh Mohammad Hussein Alamoudi for Viral Hemorrhagic Fever, King Abdulaziz University, Jeddah, Saudi Arabia. The sponsor, Sheikh Mohammad Hussein Alamoudi, had no involvement in the study design, in the collection, analysis or interpretation of data, in the writing of the manuscript, or in the decision to submit the manuscript for publication.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq A. Madani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madani, T.A., Abuelzein, ET.M.E., Azhar, E.I. et al. Thermal inactivation of Alkhumra hemorrhagic fever virus. Arch Virol 159, 2687–2691 (2014). https://doi.org/10.1007/s00705-014-2134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2134-z

Keywords

Navigation