Skip to main content
Log in

Foot-and-mouth disease virus low-fidelity polymerase mutants are attenuated

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Previous studies have shown that RNA viruses can be attenuated by either increased or decreased viral polymerase replication fidelity. Although foot-and-mouth disease virus (FMDV) high-fidelity RNA-dependent RNA polymerase (RdRp) variants with an attenuated phenotype have been isolated using mutagens, no FMDV mutant with a low-fidelity polymerase has been documented to date. Here, we describe the generation of several FMDV RdRp mutants using site-directed mutagenesis via a reverse genetic system. Mutation frequency assays confirmed that five rescued FMDV RdRp mutant populations had lower replication fidelity than the wild-type virus population, which allowed us to assess the effects of the change in replication fidelity on the virus phenotype. These low-fidelity FMDV RdRp mutants showed increased sensitivity to ribavirin or 5-fluorouracil (5-FU) treatment without a loss of growth capacity in cell cultures. In addition, decreased fitness and attenuated virulence were observed for the RdRp mutants with lower fidelity. Importantly, based on a quantitative analysis for fidelity and virulence, we concluded that lower replication fidelity is associated with a more attenuated virus phenotype. These results further contribute to our understanding of the replication fidelity of polymerases of RNA viruses and its relationship to virulence attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Airaksinen A, Pariente N, Menéndez-Arias L, Domingo E (2003) Curing of foot-and-mouth disease virus from persistently infected cells by ribavirin involves enhanced mutagenesis. Virology 311:339–349

    Article  PubMed  CAS  Google Scholar 

  2. Anderson JP, Daifuku R, Loeb LA (2004) Viral error catastrophe by mutagenic nucleosides. Annu Rev Microbiol 58:183–205

    Article  PubMed  CAS  Google Scholar 

  3. Baranowski E, Molina N, Núñez JI, Sobrino F, Sáiz M (2003) Recovery of infectious foot-and-mouth disease virus from suckling mice after direct inoculation with in vitro-transcribed RNA. Journal of virology 77:11290–11295

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Beaucourt S, Borderia AV, Coffey LL, Gnadig NF, Sanz-Ramos M, Beeharry Y, Vignuzzi M (2011) Isolation of fidelity variants of RNA viruses and characterization of virus mutation frequency. J Vis Exp 52:2953

    PubMed  Google Scholar 

  5. Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL (2005) Comparative Genomics of Foot-and-Mouth Disease Virus. Journal of virology 79:6487–6504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Coffey LL, Beeharry Y, Bordería AV, Blanc H, Vignuzzi M (2011) Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proceedings of the National Academy of Sciences 108:16038–16043

    Article  CAS  Google Scholar 

  7. Coffey LL, Vignuzzi M (2011) Host alternation of chikungunya virus increases fitness while restricting population diversity and adaptability to novel selective pressures. Journal of virology 85:1025–1035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proceedings of the National Academy of Sciences of the United States of America 98:6895–6900

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Crotty S, Andino R (2002) Implications of high RNA virus mutation rates: lethal mutagenesis and the antiviral drug ribavirin. Microbes and infection 4:1301–1307

    Article  PubMed  CAS  Google Scholar 

  10. Domingo E, Holland J (1997) RNA virus mutations and fitness for survival. Annual Reviews in Microbiology 51:151–178

    Article  CAS  Google Scholar 

  11. Domingo E, Menéndez-Arias L, Holland JJ (1997) RNA virus fitness. Reviews in medical virology 7:87–96

    Article  PubMed  CAS  Google Scholar 

  12. Domingo E, Escarmis C, Baranowski E, Ruiz-Jarabo CM, Carrillo E, Nunez JI, Sobrino F (2003) Evolution of foot-and-mouth disease virus. Virus research 91:47–63

    Article  PubMed  CAS  Google Scholar 

  13. Domingo E, Wain-Hobson S (2009) The 30th anniversary of quasispecies. Meeting on ‘Quasispecies: past, present and future’. EMBO Rep 10:444–448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Eigen M (1993) Viral quasispecies. SCIENTIFIC AMERICAN-AMERICAN EDITION- 269:32–32

    Google Scholar 

  15. Ferrer-Orta C, Arias A, Perez-Luque R, Escarmís C, Domingo E, Verdaguer N (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. Journal of Biological Chemistry 279:47212–47221

    Article  PubMed  CAS  Google Scholar 

  16. Ferrer-Orta C, Arias A, Agudo R, Pérez-Luque R, Escarmís C, Domingo E, Verdaguer N (2006) The structure of a protein primer–polymerase complex in the initiation of genome replication. The EMBO journal 25:880–888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2007) Sequential structures provide insights into the fidelity of RNA replication. Proceedings of the National Academy of Sciences of the United States of America 104:9463–9468

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Garcia-Nunez S, Konig G, Berinstein A, Carrillo E (2010) Differences in the virulence of two strains of Foot-and-Mouth Disease Virus Serotype A with the same spatiotemporal distribution. Virus research 147:149–152

    Article  PubMed  CAS  Google Scholar 

  19. Gnadig NF, Beaucourt S, Campagnola G, Borderia AV, Sanz-Ramos M, Gong P, Blanc H, Peersen OB, Vignuzzi M (2012) Coxsackievirus B3 mutator strains are attenuated in vivo. Proceedings of the National Academy of Sciences of the United States of America 109:E2294–E2303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Goris N, Vandenbussche F, Herr C, Villers J, Stede YV, Clercq KD (2009) Validaion of two real-time RT-PCR methods for foot-and-mouth disease diagnosis: RNA-extraction, matrix effect, uncertainty of measurement and precision. Journal of virological methods 160:157–162

    Article  PubMed  CAS  Google Scholar 

  21. Govorkova EA, Ilyushina NA, Marathe BM, McClaren JL, Webster RG (2010) Competitive fitness of oseltamivir-sensitive and-resistant highly pathogenic H5N1 influenza viruses in a ferret model. Journal of virology 84:8042–8050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Grubman MJ, Baxt B (1982) Translation of foot-and-mouth disease virion RNA and processing of the primary cleavage products in a rabbit reticulocyte lysate. Virology 116:19–30

    Article  PubMed  CAS  Google Scholar 

  23. Grubman MJ, Baxt B (2004) Foot-and-Mouth Disease. Clinical Microbiology Reviews 17:465–493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Gutiérrez-Rivas M, Pulido MR, Baranowski E, Sobrino F, Sáiz M (2008) Tolerance to mutations in the foot-and-mouth disease virus integrin-binding RGD region is different in cultured cells and in vivo and depends on the capsid sequence context. Journal of General Virology 89:2531–2539

    Article  PubMed  Google Scholar 

  25. Knowles NJ, Samuel AR (2003) Molecular epidemiology of foot-and-mouth disease virus. Virus research 91:65–80

    Article  PubMed  CAS  Google Scholar 

  26. Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS pathogens 6:e1001005

    Article  PubMed  PubMed Central  Google Scholar 

  27. Levi LI, Gnädig NF, Beaucourt S, McPherson MJ, Baron B, Arnold JJ, Vignuzzi M (2010) Fidelity variants of RNA dependent RNA polymerases uncover an indirect, mutagenic activity of amiloride compounds. PLoS pathogens 6:e1001163

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Yang X, Lee CA, Moustafa IM, Smidansky ED, Lum D, Arnold JJ, Cameron CE, Boehr DD (2013) Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. The Journal of biological chemistry 288:32753–32765

    Article  PubMed  CAS  Google Scholar 

  29. Loeb LA, Mullins JI (2000) Perspective-Lethal Mutagenesis of HIV by Mutagenic Ribonucleoside Analogs. AIDS research and human retroviruses 16:1–3

    Article  PubMed  CAS  Google Scholar 

  30. Martín V, Grande-Pérez A, Domingo E (2008) No evidence of selection for mutational robustness during lethal mutagenesis of lymphocytic choriomeningitis virus. Virology 378:185–192

    Article  PubMed  Google Scholar 

  31. Mason PW, Grubman MJ, Baxt B (2003) Molecular basis of pathogenesis of FMDV. Virus research 91:9–32

    Article  PubMed  CAS  Google Scholar 

  32. Melo EC, Saraiva V, Astudillo V (2002) Review of the status of foot and mouth disease in countries of South America and approaches to control and eradication. Rev sci tech Off int Epiz 21:429–436

    Google Scholar 

  33. Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proceedings of the National Academy of Sciences of the United States of America 100:7289–7294

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Pfeiffer JK, Kirkegaard K (2005) Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS pathogens 1:e11

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reed LJ, Muech H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27:493–497

    Google Scholar 

  36. Rodriguez-Pulido M, Sobrino F, Saiz M (2001) Inoculation of newborn mice with non-coding regions of foot-and-mouth disease virus RNA can induce a rapid, solid and wide-range protection against viral infection. Antiviral Research 92:500–504

    Article  Google Scholar 

  37. Ruiz-Jarabo CM, Ly C, Domingo E, Torre JCdl (2003) Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308:37–47

    Article  PubMed  CAS  Google Scholar 

  38. Schaaper RM (1998) Antimutator mutants in bacteriophage T4 and Escherichia coli. Genetics 148:1579–1585

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Shaw AE, Reid SM, Ebert K, Hutchings GH, Ferris NP, King DP (2007) Implementation of a one-step real-time RT-PCR protocol for diagnosis of foot-and-mouth disease. Journal of virological methods 143:81–85

    Article  PubMed  CAS  Google Scholar 

  40. Sierra M, Airaksinen A, González-López C, Agudo R, Arias A, Domingo E (2007) Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe. Journal of virology 81:2012–2024

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Sobrino F, Saiz M, Jimenez-clavero MA, Nunez JI, Rosas MF, Baranowski E, Ley V (2001) Foot-and-mouth disease virus: a long known virus, but a current threat. Vet Res 32:1–30

    Article  PubMed  CAS  Google Scholar 

  42. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2005) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348

    Article  PubMed  PubMed Central  Google Scholar 

  43. Vignuzzi M, Wendt E, Andino R (2008) Engineering attenuated virus vaccines by controlling replication fidelity. Nature medicine 14:154–161

    Article  PubMed  CAS  Google Scholar 

  44. Wang H, Zhao L, Li W, Zhou G, Yu L (2011) Identification of a conformational epitope on the VP1 GH Loop of type Asia1 foot-and-mouth disease virus defined by a protective monoclonal antibody. Veterinary microbiology 148:189–199

    Article  PubMed  CAS  Google Scholar 

  45. Weeks SA, Lee CA, Zhao Y, Smidansky ED, August A, Arnold JJ, Cameron CE (2012) A Polymerase mechanism-based strategy for viral attenuation and vaccine development. The Journal of biological chemistry 287:31618–31622

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Zeng J, Wang H, Xie X, Yang D, Zhou G, Yu L (2013) An increased replication fidelity mutant of foot-and-mouth disease virus retains fitness in vitro and virulence in vivo. Antiviral Res 100:1–7

    Article  PubMed  CAS  Google Scholar 

  47. Zeng J, Wang H, Xie X, Li C, Zhou G, Yang D, Yu L (2014) Ribavirin-Resistant Variants of Foot-and-Mouth Disease Virus: The Effect of Restricted Quasispecies Diversity on Viral Virulence. J Virol: JVI. 03594–03513

Download references

Acknowledgments

This work was supported by grants from the Key Project of Heilongjiang Provincial Science and Technology Programme (No. GA06B202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Additional information

X. Xie and H. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Wang, H., Zeng, J. et al. Foot-and-mouth disease virus low-fidelity polymerase mutants are attenuated. Arch Virol 159, 2641–2650 (2014). https://doi.org/10.1007/s00705-014-2126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2126-z

Keywords

Navigation