Skip to main content

Advertisement

Log in

Caraparu virus induces damage and alterations in antioxidant defenses in the liver of BALB/c mice after subcutaneous infection

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Oxidative stress is a disturbance in the oxidant-antioxidant balance leading to potential cellular damage. Most cells can tolerate a mild degree of oxidative stress because they have a system that counteracts oxidation that includes antioxidant molecules such as glutathione (GSH) and superoxide dismutase (SOD). Disruption of the host antioxidant status has been recognized as an important contributor to the pathogenesis of many viruses. Caraparu virus (CARV) is a member of group C of the Bunyaviridae family of viruses. In South American countries, group C bunyaviruses are among the common agents of human febrile illness and have caused multiple notable outbreaks of human disease in recent decades; nevertheless, little is known about the pathogenic characteristics of these viruses. The purpose of this study was to examine the hepatic pathogenesis of CARV in mice and the involvement of oxidative stress and antioxidant defenses on this pathology. Following subcutaneous infection of BALB/c mice, CARV was detected in the liver, and histopathology revealed acute hepatitis. Increased serum levels of aspartate and alanine aminotransferases (AST/ALT) and greater hepatic expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) were found in infected animals. CARV infection did not alter the biomarkers of oxidative stress but caused an increase in GSH content and altered the expression and activity of SOD. This is the first report of an alteration of oxidative homeostasis upon CARV infection, which may, in part, explain the hepatic pathogenesis of this virus, as well as the pathogenesis of other Bunyaviridae members.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Afonso V, Santos G, Collin P, Khatib AM, Mitrovic DR, Lomri N, Leitman DC, Lomri A (2006) Tumor necrosis factor-alpha down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway. Free Radic Biol Med 41:709–721

    Article  PubMed  CAS  Google Scholar 

  2. Bernardes-Terzian AC, de-Moraes-Bronzoni RV, Drumond BP, da Silva-Nunes M, da Silva NS, Urbano-Ferreira M, Sperança MA, Nogueira ML (2009) Sporadic oropouche virus infection, Acre, Brazil. Emerg Infect Dis 15:348–350

    Article  PubMed  Google Scholar 

  3. Brinton MA, Gavin EI, Lo WK, Pinto AJ, Morahan OS (1993) Characterization of murine Caraparu Bunyavirus liver infection and imunomodulator-mediated antiviral protection. Antiviral Res 20:155–171

    Article  PubMed  CAS  Google Scholar 

  4. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  5. Cai J, Chen Y, Seth S, Furukawa S, Compans RW, Jones DP (2003) Inhibition of influenza infection by glutathione. Free Radic Biol Med 34:928–936

    Article  PubMed  CAS  Google Scholar 

  6. Casals J, Whitman L (1961) Group C, a new serological group of hitherto undescribed arthropod-borne viruses. Immunological studies. Am J Trop Med Hyg 10:250–258

    PubMed  CAS  Google Scholar 

  7. Casola A, Burger N, Liu T, Jamaluddin M, Brasier AR, Garofalo RP (2001) Oxidant tone regulates RANTES gene expression in airway epithelial cells infected with respiratory syncytial virus. Role in viral-induced interferon regulatory factor activation. J Biol Chem 276:19715–19722

    Article  PubMed  CAS  Google Scholar 

  8. Castro SM, Guerrero-Plata A, Suarez-Real G, Adegboyega PA, Colasurdo GN, Khan AM, Garofalo RP, Casola A (2006) Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am J Respir Crit Care Med 174:1361–1369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Causey OR, Causey CE, Maroja OM, Macedo DG (1961) The isolation of arthropod-born viruses including members of two hitherto undescribed serological groups, in the Amazon Region of Brazil. Am J Trop Med Hyg 10:227–249

    PubMed  CAS  Google Scholar 

  10. Chen TH, Tang P, Yang CF, Kao LH, Lo YP, Chuang CK, Shih YT, Chen WJ (2011) Antioxidant defense is one of the mechanisms by which mosquito cells survive dengue 2 viral infection. Virology 410:410–417

    Article  PubMed  CAS  Google Scholar 

  11. de Brito Magalhães CL, Drumond BP, Novaes RF, Quinan BR, de Magalhães JC, dos Santos JR, Pinto CA, Assis MT, Bonjardim CA, Kroon EG, Ferreira PC (2011) Identification of a phylogenetically distinct orthobunyavirus from group C. Arch Virol 156:1173–1184

    Article  PubMed  Google Scholar 

  12. Elliott RM, Weber F (2009) Bunyaviruses and the Type I interferon system. Viruses 1:1003–1021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Forshey BM, Guevara C, Laguna-Torres VA, Cespedes M, Vargas J, Gianella A, Vallejo E, Madrid C, Aguayo N, Gotuzzo E, Suarez V, Morales AM, Beingolea L, Reyes N, Perez J, Negrete M, Rocha C, Morrison AC, Russell KL, Blair PJ, Olson JG, Kochel TJ (2010) Arboviral etiologies of acute febrile illnesses in Western South America, 2000–2007. PLoS Negl Trop Dis 4:787

    Article  Google Scholar 

  14. Gabbita SP, Robinson KA, Stewart CA, Floyd RA, Hensley K (2000) Redox regulatory mechanisms of cellular signal transduction. Arch Biochem Biophys 376:1–13

    Article  PubMed  CAS  Google Scholar 

  15. Ha HL, Shin HJ, Feitelson MA, Yu DY (2010) Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol 16:6035–6043

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Hosakote YM, Jantzi PD, Esham DL, Spratt H, Kurosky A, Casola A, Garofalo RP (2011) Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 183:1550–1560

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Hosakote YM, Liu T, Castro SM, Garofalo RP, Casola A (2009) Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol 41:348–357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Huang SH, Cao XJ, Liu W, Shi XY, Wei W (2010) Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J Pineal Res 48:109–116

    Article  PubMed  CAS  Google Scholar 

  19. Iversson LB, Travassos da Rosa APA, Coimbra TLM, Ferreira IB, Nassar ES (1987) Human disease in Ribeira Valley, Brazil caused by Caraparu, a group C arbovirus- report of a case. Rev Inst Med Trop 29:112–117

    Article  CAS  Google Scholar 

  20. Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  PubMed  CAS  Google Scholar 

  21. Liu T, Castro S, Brasier AR, Jamaluddin M, Garofalo RP, Casola A (2004) Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J Biol Chem 279:2461–2469

    Article  PubMed  CAS  Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  23. Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Narayanan A, Popova T, Turell M, Kidd J, Chertow J, Popov SG, Bailey C, Kashanchi F, Kehn-Hall K (2011) Alteration in superoxide dismutase 1 causes oxidative stress and p38 MAPK activation following RVFV infection. PLoS One 6:e20354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Nunes MRT, Travassos da Rosa APA, Weaver SC, Tesh RB, Vasconcelos PF (2005) Molecular epidemiology of group C viruses (Bunyaviridae, Orthobunyavirus) isolated in the Americas. J Virol 79:10561–10570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Ostergaard H, Tachibana C, Winther JR (2004) Monitoring disulfide bond formation in the eukaryotic cytosol. J Cell Biol 166:337–345

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Palamara AT, Garaci E, Rotilio G, Ciriolo MR, Casabianca A, Fraternale A, Rossi L, Schiavano GF, Chiarantini L, Magnani M (1996) Inhibition of murine AIDS by reduced glutathione. AIDS Res Hum Retroviruses 12:1373–1381

    Article  PubMed  CAS  Google Scholar 

  28. Palamara AT, Perno CF, Ciriolo MR, Dini L, Balestra E, D’Agostini C, Di Francesco P, Favalli C, Rotilio G, Garaci E (1995) Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res 27:237–253

    Article  PubMed  CAS  Google Scholar 

  29. Papi A, Contoli M, Gasparini P, Bristot L, Edwards MR, Chicca M, Leis M, Ciaccia A, Caramori G, Johnston SL, Pinamonti S (2008) Role of xanthine oxidase activation and reduced glutathione depletion in rhinovirus induction of inflammation in respiratory epithelial cells. J Biol Chem 283:28595–28606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Pinheiro FP, Travassos da Rosa AP, Travassos da Rosa JF, Ishak R, Freitas RB, Gomes ML, LeDuc JW, Oliva OF (1981) Oropouche virus. I. A review of clinical, epidemiological, and ecological findings. Am J Trop Med Hyg 30:149–160

    PubMed  CAS  Google Scholar 

  31. Qin Y, Tian Y (2010) Protective effects of total glucosides of paeony and the underlying mechanisms in carbon tetrachloride-induced experimental liver injury. Arch Med Sci 7:604–612

    Google Scholar 

  32. Schmaljohn CS, Nichol ST (2007) Bunyaviridae. In: Fields BN, Knipe DM, Howley PM, Griffin DE (eds) Fields Virology, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1741–1778

    Google Scholar 

  33. Shope RE, Whitman L (1966) Nepuyo virus, a new group C agent isolated in Trinidad and Brazil. II Serological studies. Am J Trop Med Hyg 15:772–774

    PubMed  CAS  Google Scholar 

  34. Shope RE, Woodall JP, Travassos da Rosa APA (1988) The epidemiology of disease caused by viruses in group C and Guamá (Bunyaviridae). In: Monath TP (ed) The arboviruses: epidemiology and ecology. CRC Press Inc, Boca Raton, pp 37–52

    Google Scholar 

  35. Soldan SS, González-Scarano F (2005) Emerging infectious diseases: the Bunyaviridae. J Neurovirol 11:412–423

    Article  PubMed  Google Scholar 

  36. Tian Y, Jiang W, Gao N, Zhang J, Chen W, Fan D, Zhou D, An J (2010) Inhibitory effects of glutathione on dengue virus production. Biochem Biophys Res Commun 397:420–424

    Article  PubMed  CAS  Google Scholar 

  37. Vasconcelos HB, Azevedo RS, Casseb SM, Nunes-Neto JP, Chiang JO, Cantuária PC, Segura MN, Martins LC, Monteiro HA, Rodrigues SG, Nunes MR, Vasconcelos PF (2009) Oropouche fever epidemic in Northern Brazil: epidemiology and molecular characterization of isolates. J Clin Virol 44:129–133

    Article  PubMed  CAS  Google Scholar 

  38. Vasconcelos PFC, Da Rosa JF, Da Rosa AP, Degallier N, Pinheiro FP, Sá Filho GC (1991) Epidemiology of encephalitis caused by arbovirus in the Brazilian Amazonia. Rev Inst Med Trop Sao Paulo 33:465–476

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Chen Y, Gao N, Wang Y, Tian Y, Wu J, Zhang J, Zhu J, Fan D, An J (2013) Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PLoS One 8:e55407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Xiong Q, Xie P, Li H, Hao L, Li G, Qiu T, Liu Y (2010) Acute effects of microcystins exposure on the transcription of antioxidant enzyme gene in three organs (liver, kidney, and testis) of male Wistar rats. J Biochem Mol Toxicol 24:361–367

    Article  PubMed  CAS  Google Scholar 

  41. Zamocky M, Furtmuller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10:1527–1548

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work received financial support from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) – Process APQ-04125-10, Brazil. We thank Universidade Federal de Ouro Preto (UFOP) and the Research Center in Biological Sciences (NUPEB/UFOP), Brazil. The authors are grateful to colleagues from the Virus Laboratory (UFMG), Laboratory of Metabolic Biochemistry (UFOP) and Experimental Nutrition (UFOP) for their technical and scientific support. We are also grateful to Maria Terezinha Bahia from Chagas’ Disease Laboratory (UFOP) for the use of the real-time PCR ABI 7300 equipment (Applied Biosystems) and Jaquelline G. de Oliveira, Marcelo Eustáquio Silva, Melina Oliveira de Souza and Joamyr Victor Rossoni Junior for help with certain experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cintia Lopes de Brito Magalhães.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camini, F.C., Almeida, L.T., Bernardes, C.S. et al. Caraparu virus induces damage and alterations in antioxidant defenses in the liver of BALB/c mice after subcutaneous infection. Arch Virol 159, 2621–2632 (2014). https://doi.org/10.1007/s00705-014-2123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2123-2

Keywords

Navigation