Archives of Virology

, Volume 159, Issue 8, pp 1927–1940 | Cite as

Genetic manipulation of a transcription-regulating sequence of porcine reproductive and respiratory syndrome virus reveals key nucleotides determining its activity

  • Haihong Zheng
  • Keyu Zhang
  • Xing-Quan Zhu
  • Changlong Liu
  • Jiaqi Lu
  • Fei Gao
  • Yan Zhou
  • Hao Zheng
  • Tao Lin
  • Liwei Li
  • Guangzhi Tong
  • Zuzhang Wei
  • Shishan Yuan
Original Article


The factors that determine the transcription-regulating sequence (TRS) activity of porcine reproductive and respiratory syndrome virus (PRRSV) remain largely unclear. In this study, the effect of mutagenesis of conserved C nucleotides at positions 5 and 6 in the leader TRS (TRS-L) and/or canonical body TRS7 (TRS-B7) on the synthesis of subgenomic (sg) mRNA and virus infectivity was investigated in the context of a type 2 PRRSV infectious cDNA clone. The results showed that a double C mutation in the leader TRS completely abolished sg mRNAs synthesis and virus infectivity, but a single C mutation did not. A single C or double C mutation in TRS-B7.1 or/and TRS-B7.2 impaired or abolished the corresponding sg mRNA synthesis. Introduction of identical mutations in the leader and body TRSs partially restored sg mRNA7.1 and/or sg mRNA7.2 transcription, indicating that the base-pairing interaction between sense TRS-L and cTRS-B is a crucial factor influencing sg mRNA synthesis. Analysis of the mRNA leader-body junctions of mutants provided evidence for a mechanism of discontinuous minus-strand transcription. This study also showed that mutational inactivation of TRS-B7.1 or TRS-B7.2 did not affect the production of infectious progeny virus, and the sg mRNA formed from each of them could express N protein. However, TRS-B7.1 plays more important roles than TRS-B7.2 in maintaining the growth characteristic of type 2 PRRSV. These results provide more insight into the molecular mechanism of genome expression and subgenomic mRNA transcription of PRRSV.


Mutant Virus Shuttle Plasmid Equine Arteritis Virus Infectious Progeny Virus Discontinuous Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported from the National Natural Science Foundation of China (30972204, 31372444) and the EU Seventh Framework Program (No. 245141).

Supplementary material

705_2014_2018_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOC 72 kb)


  1. 1.
    Baric RS, Yount B (2000) Subgenomic negative-strand RNA function during mouse hepatitis virus infection. J Virol 74(9):4039–4046PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bautista EM, Meulenberg JJ, Choi CS, Molitor TW (1996) Structural polypeptides of the American (VR-2332) strain of porcine reproductive and respiratory syndrome virus. Arch Virol 141(7):1357–1365PubMedCrossRefGoogle Scholar
  3. 3.
    Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson WT, Morrison RB, Gorcyca D, Chladek D (1992) Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J Vet Diagn Invest 4(2):127–133PubMedCrossRefGoogle Scholar
  4. 4.
    Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, Goyal SM, McCullough S, Morrison RB, Joo HS et al (1992) Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest 4(2):117–126PubMedCrossRefGoogle Scholar
  5. 5.
    de Vries AA, Glaser AL, Raamsman MJ, Rottier PJ (2001) Recombinant equine arteritis virus as an expression vector. Virology 284(2):259–276PubMedCrossRefGoogle Scholar
  6. 6.
    den Boon JA, Kleijnen MF, Spaan WJ, Snijder EJ (1996) Equine arteritis virus subgenomic mRNA synthesis: analysis of leader-body junctions and replicative-form RNAs. J Virol 70(7):4291–4298Google Scholar
  7. 7.
    Firth AE, Zevenhoven-Dobbe JC, Wills NM, Go YY, Balasuriya UB, Atkins JF, Snijder EJ, Posthuma CC (2011) Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J Gen Virol 92(Pt 5):1097–1106PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ (2006) Nidovirales: evolving the largest RNA virus genome. Virus Res 117(1):17–37PubMedCrossRefGoogle Scholar
  9. 9.
    Hussain S, Pan J, Chen Y, Yang Y, Xu J, Peng Y, Wu Y, Li Z, Zhu Y, Tien P, Guo D (2005) Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 79(9):5288–5295PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP (2011) Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 92(Pt 5):1107–1116PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Lee C, Calvert JG, Welch SK, Yoo D (2005) A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity. Virology 331(1):47–62PubMedCrossRefGoogle Scholar
  12. 12.
    Lee C, Yoo D (2006) The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties. Virology 355(1):30–43PubMedCrossRefGoogle Scholar
  13. 13.
    Lu J, Gao F, Wei Z, Liu P, Liu C, Zheng H, Li Y, Lin T, Yuan S (2011) A 5’-proximal stem-loop structure of 5’ untranslated region of porcine reproductive and respiratory syndrome virus genome is key for virus replication. Virol J 8:172PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Makino S, Soe LH, Shieh CK, Lai MM (1988) Discontinuous transcription generates heterogeneity at the leader fusion sites of coronavirus mRNAs. J Virol 62(10):3870–3873PubMedCentralPubMedGoogle Scholar
  15. 15.
    Meng XJ, Paul PS, Morozov I, Halbur PG (1996) A nested set of six or seven subgenomic mRNAs is formed in cells infected with different isolates of porcine reproductive and respiratory syndrome virus. J Gen Virol 77(Pt 6):1265–1270PubMedCrossRefGoogle Scholar
  16. 16.
    Meulenberg JJ, de Meijer EJ, Moormann RJ (1993) Subgenomic RNAs of Lelystad virus contain a conserved leader-body junction sequence. J Gen Virol 74(Pt 8):1697–1701PubMedCrossRefGoogle Scholar
  17. 17.
    Meulenberg JJ, Hulst MM, de Meijer EJ, Moonen PL, den Besten A, de Kluyver EP, Wensvoort G, Moormann RJ (1993) Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192(1):62–72PubMedCrossRefGoogle Scholar
  18. 18.
    Morozov I, Meng XJ, Paul PS (1995) Sequence analysis of open reading frames (ORFs) 2 to 4 of a U.S. isolate of porcine reproductive and respiratory syndrome virus. Arch Virol 140(7):1313–1319PubMedCrossRefGoogle Scholar
  19. 19.
    Nelsen CJ, Murtaugh MP, Faaberg KS (1999) Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J Virol 73(1):270–280PubMedCentralPubMedGoogle Scholar
  20. 20.
    Pasternak AO (2003) Nidovirus transcription-regulating sequences. PhD thesis Leiden UniversityGoogle Scholar
  21. 21.
    Pasternak AO, Gultyaev AP, Spaan WJ, Snijder EJ (2000) Genetic manipulation of arterivirus alternative mRNA leader-body junction sites reveals tight regulation of structural protein expression. J Virol 74(24):11642–11653PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Pasternak AO, Spaan WJ, Snijder EJ (2004) Regulation of relative abundance of arterivirus subgenomic mRNAs. J Virol 78(15):8102–8113PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Pasternak AO, Spaan WJ, Snijder EJ (2006) Nidovirus transcription: how to make sense…? J Gen Virol 87(Pt 6):1403–1421PubMedCrossRefGoogle Scholar
  24. 24.
    Pasternak AO, van den Born E, Spaan WJ, Snijder EJ (2001) Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. EMBO J 20(24):7220–7228PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Pasternak AO, van den Born E, Spaan WJ, Snijder EJ (2003) The stability of the duplex between sense and antisense transcription-regulating sequences is a crucial factor in arterivirus subgenomic mRNA synthesis. J Virol 77(2):1175–1183PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Sawicki D, Wang T, Sawicki S (2001) The RNA structures engaged in replication and transcription of the A59 strain of mouse hepatitis virus. J Gen Virol 82(Pt 2):385–396PubMedGoogle Scholar
  27. 27.
    Sawicki SG, Sawicki DL (1995) Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380:499–506PubMedCrossRefGoogle Scholar
  28. 28.
    Sethna PB, Hung SL, Brian DA (1989) Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc Natl Acad Sci USA 86(14):5626–5630PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Snijder EJ, Meulenberg JJ (1998) The molecular biology of arteriviruses. J Gen Virol 79(Pt 5):961–979PubMedGoogle Scholar
  30. 30.
    Van Den Born E, Gultyaev AP, Snijder EJ (2004) Secondary structure and function of the 5’-proximal region of the equine arteritis virus RNA genome. RNA 10(3):424–437CrossRefGoogle Scholar
  31. 31.
    van Dinten LC, den Boon JA, Wassenaar AL, Spaan WJ, Snijder EJ (1997) An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc Natl Acad Sci USA 94(3):991–996PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    van Marle G, Dobbe JC, Gultyaev AP, Luytjes W, Spaan WJ, Snijder EJ (1999) Arterivirus discontinuous mRNA transcription is guided by base pairing between sense and antisense transcription-regulating sequences. Proc Natl Acad Sci USA 96(21):12056–12061PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Wei Z, Lin T, Sun L, Li Y, Wang X, Gao F, Liu R, Chen C, Tong G, Yuan S N-linked glycosylation of GP5 of porcine reproductive and respiratory syndrome virus is critically important for virus replication in vivo. J Virol 86(18):9941–51Google Scholar
  34. 34.
    Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F et al (1991) Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q 13(3):121–130PubMedCrossRefGoogle Scholar
  35. 35.
    Wu WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, Christopher-Hennings J, Nelson EA (2001) A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 287(1):183–191PubMedCrossRefGoogle Scholar
  36. 36.
    Yuan S, Murtaugh MP, Faaberg KS (2000) Heteroclite subgenomic RNAs are produced in porcine reproductive and respiratory syndrome virus infection. Virology 275(1):158–169PubMedCrossRefGoogle Scholar
  37. 37.
    Yuan S, Murtaugh MP, Schumann FA, Mickelson D, Faaberg KS (2004) Characterization of heteroclite subgenomic RNAs associated with PRRSV infection. Virus Res 105(1):75–87PubMedCrossRefGoogle Scholar
  38. 38.
    Yuan S, Wei Z (2008) Construction of infectious cDNA clones of PRRSV: separation of coding regions for nonstructural and structural proteins. Sci China C Life Sci 51(3):271–279PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang X, Lai MM (1994) Unusual heterogeneity of leader-mRNA fusion in a murine coronavirus: implications for the mechanism of RNA transcription and recombination. J Virol 68(10):6626–6633PubMedCentralPubMedGoogle Scholar
  40. 40.
    Zheng H, Sun Z, Zhu XQ, Long J, Lu J, Lv J, Yuan S (2010) Recombinant PRRSV expressing porcine circovirus sequence reveals novel aspect of transcriptional control of porcine arterivirus. Virus Res 148(1–2):8–16PubMedCrossRefGoogle Scholar
  41. 41.
    Zuniga S, Sola I, Alonso S, Enjuanes L (2004) Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78(2):980–994PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  • Haihong Zheng
    • 1
  • Keyu Zhang
    • 2
  • Xing-Quan Zhu
    • 3
  • Changlong Liu
    • 1
  • Jiaqi Lu
    • 1
  • Fei Gao
    • 1
  • Yan Zhou
    • 1
  • Hao Zheng
    • 1
  • Tao Lin
    • 1
  • Liwei Li
    • 1
  • Guangzhi Tong
    • 1
  • Zuzhang Wei
    • 1
    • 4
  • Shishan Yuan
    • 1
  1. 1.Department of Swine Infectious Diseases, Shanghai Veterinary Research InstituteChinese Academy of Agricultural SciencesShanghaiChina
  2. 2.Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research InstituteChinese Academy of Agricultural SciencesShanghaiChina
  3. 3.State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research InstituteChinese Academy of Agricultural SciencesLanzhouChina
  4. 4.College of Animal Science and TechnologyGuangxi UniversityNanningChina

Personalised recommendations