Skip to main content

Advertisement

Log in

A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Infections with influenza and respiratory syncytial virus (RSV) rank high among the most common human respiratory diseases worldwide. Previously, we developed a replication-incompetent influenza virus by replacing the coding sequence of the PB2 gene, which encodes one of the viral RNA polymerase subunits, with that of a reporter gene. Here, we generated a PB2-knockout recombinant influenza virus expressing the F protein of RSV (PB2-RSVF virus) and tested its potential as a bivalent vaccine. In mice intranasally immunized with the PB2-RSVF virus, we detected high levels of antibodies against influenza virus, but not RSV. PB2-RSVF virus-immunized mice were protected from a lethal challenge with influenza virus but experienced severe body weight loss when challenged with RSV, indicating that PB2-RSVF vaccination enhanced RSV-associated disease. These results highlight one of the difficulties of developing an effective bivalent vaccine against influenza virus and RSV infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. World Health Organization (2009) Acute respiratory infections (update September 2009). http://www.who.int/vaccine_research/diseases/ari/en/index2.html

  2. Girard MP, Cherian T, Pervikov Y, Kieny MP (2005) A review of vaccine research and development: human acute respiratory infections. Vaccine 23:5708–5724

    Article  CAS  PubMed  Google Scholar 

  3. Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM et al (1969) Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am J Epidemiol 89:422–434

    CAS  PubMed  Google Scholar 

  4. Haynes LM, Jones LP, Barskey A, Anderson LJ, Tripp RA (2003) Enhanced disease and pulmonary eosinophilia associated with formalin-inactivated respiratory syncytial virus vaccination are linked to G glycoprotein CX3C–CX3CR1 interaction and expression of substance P. J Virol 77:9831–9844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ et al (2009) Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat Med 15:34–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Chang J (2011) Current progress on development of respiratory syncytial virus vaccine. BMB Rep 44:232–237

    Article  CAS  PubMed  Google Scholar 

  7. Shao HY, Yu SL, Sia C, Chen Y, Chitra E et al (2009) Immunogenic properties of RSV-B1 fusion (F) protein gene-encoding recombinant adenoviruses. Vaccine 27:5460–5471

    Article  CAS  PubMed  Google Scholar 

  8. Singh SR, Dennis VA, Carter CL, Pillai SR, Jefferson A et al (2007) Immunogenicity and efficacy of recombinant RSV-F vaccine in a mouse model. Vaccine 25:6211–6223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Olmsted RA, Elango N, Prince GA, Murphy BR, Johnson PR et al (1986) Expression of the F glycoprotein of respiratory syncytial virus by a recombinant vaccinia virus: comparison of the individual contributions of the F and G glycoproteins to host immunity. Proc Natl Acad Sci USA 83:7462–7466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bembridge GP, Lopez JA, Bustos R, Melero JA, Cook R et al (1999) Priming with a secreted form of the fusion protein of respiratory syncytial virus (RSV) promotes interleukin-4 (IL-4) and IL-5 production but not pulmonary eosinophilia following RSV challenge. J Virol 73:10086–10094

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Bembridge GP, Lopez JA, Cook R, Melero JA, Taylor G (1998) Recombinant vaccinia virus coexpressing the F protein of respiratory syncytial virus (RSV) and interleukin-4 (IL-4) does not inhibit the development of RSV-specific memory cytotoxic T lymphocytes, whereas priming is diminished in the presence of high levels of IL-2 or gamma interferon. J Virol 72:4080–4087

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bembridge GP, Rodriguez N, Garcia-Beato R, Nicolson C, Melero JA et al (2000) DNA encoding the attachment (G) or fusion (F) protein of respiratory syncytial virus induces protection in the absence of pulmonary inflammation. J Gen Virol 81:2519–2523

    CAS  PubMed  Google Scholar 

  13. Grimaldi M, Gouyon B, Sagot P, Quantin C, Huet F et al (2007) Palivizumab efficacy in preterm infants with gestational age < or = 30 weeks without bronchopulmonary dysplasia. Pediatr Pulmonol 42:189–192

    Article  PubMed  Google Scholar 

  14. (1998) Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics 102:531–537

  15. Brock SC, Heck JM, McGraw PA, Crowe JE Jr (2005) The transmembrane domain of the respiratory syncytial virus F protein is an orientation-independent apical plasma membrane sorting sequence. J Virol 79:12528–12535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bembridge GP, Rodriguez N, Garcia-Beato R, Nicolson C, Melero JA et al (2000) Respiratory syncytial virus infection of gene gun vaccinated mice induces Th2-driven pulmonary eosinophilia even in the absence of sensitisation to the fusion (F) or attachment (G) protein. Vaccine 19:1038–1046

    Article  CAS  PubMed  Google Scholar 

  17. Wright PF, Neumann G, Kawaoka Y (2007) Othomyxoviruses. In: Howley DMKPM (ed) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1691–1740

    Google Scholar 

  18. Ozawa M, Kawaoka Y (2011) Taming influenza viruses. Virus Resh 162:8–11

    Article  CAS  Google Scholar 

  19. Neumann G, Watanabe T, Ito H, Watanabe S, Goto H et al (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci USA 96:9345–9350

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ozawa M, Victor ST, Taft AS, Yamada S, Li C et al (2011) Replication-incompetent influenza A viruses that stably express a foreign gene. J Gen Virol 92:2879–2888

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Victor ST, Watanabe S, Katsura H, Ozawa M, Kawaoka Y (2012) A replication-incompetent PB2-knockout influenza A virus vaccine vector. J Virol 86:4123–4128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Uraki R, Kiso M, Iwatsuki-Horimoto K, Fukuyama S, Takashita E et al (2013) A novel bivalent vaccine based on a PB2-knockout influenza virus protects mice from pandemic H1N1 and highly pathogenic H5N1 virus challenges. J Virol 87:7874–7881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH et al (1987) Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7:379–387

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Hatakeyama S, Sakai-Tagawa Y, Kiso M, Goto H, Kawakami C et al (2005) Enhanced expression of an alpha2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor. J Clin Microbiol 43:4139–4146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  CAS  PubMed  Google Scholar 

  26. Horimoto T, Murakami S, Muramoto Y, Yamada S, Fujii K et al (2007) Enhanced growth of seed viruses for H5N1 influenza vaccines. Virology 366:23–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Xie C, He JS, Zhang M, Xue SL, Wu Q et al (2007) Oral respiratory syncytial virus (RSV) DNA vaccine expressing RSV F protein delivered by attenuated Salmonella typhimurium. Hum Gene Ther 18:746–752

    Article  CAS  PubMed  Google Scholar 

  28. Moghaddam A, Olszewska W, Wang B, Tregoning JS, Helson R et al (2006) A potential molecular mechanism for hypersensitivity caused by formalin-inactivated vaccines. Nat Med 12:905–907

    Article  CAS  PubMed  Google Scholar 

  29. Kohlmann R, Schwannecke S, Tippler B, Ternette N, Temchura VV et al (2009) Protective efficacy and immunogenicity of an adenoviral vector vaccine encoding the codon-optimized F protein of respiratory syncytial virus. J Virol 83:12601–12610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kida H, Brown LE, Webster RG (1982) Biological activity of monoclonal antibodies to operationally defined antigenic regions on the hemagglutinin molecule of A/Seal/Massachusetts/1/80 (H7N7) influenza virus. Virology 122:38–47

    Article  CAS  PubMed  Google Scholar 

  31. Openshaw PJ, Clarke SL, Record FM (1992) Pulmonary eosinophilic response to respiratory syncytial virus infection in mice sensitized to the major surface glycoprotein G. Int Immunol 4:493–500

    Article  CAS  PubMed  Google Scholar 

  32. Olszewska W, Suezer Y, Sutter G, Openshaw PJ (2004) Protective and disease-enhancing immune responses induced by recombinant modified vaccinia Ankara (MVA) expressing respiratory syncytial virus proteins. Vaccine 23:215–221

    Article  CAS  PubMed  Google Scholar 

  33. Haynes LM, Moore DD, Kurt-Jones EA, Finberg RW, Anderson LJ et al (2001) Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J Virol 75:10730–10737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP et al (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401

    Article  CAS  PubMed  Google Scholar 

  35. Boelen A, Andeweg A, Kwakkel J, Lokhorst W, Bestebroer T et al (2000) Both immunisation with a formalin-inactivated respiratory syncytial virus (RSV) vaccine and a mock antigen vaccine induce severe lung pathology and a Th2 cytokine profile in RSV-challenged mice. Vaccine 19:982–991

    Article  CAS  PubMed  Google Scholar 

  36. Schwarze J, Hamelmann E, Bradley KL, Takeda K, Gelfand EW (1997) Respiratory syncytial virus infection results in airway hyperresponsiveness and enhanced airway sensitization to allergen. J Clin Invest 100:226–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Barends M, Van Oosten M, De Rond CG, Dormans JA, Osterhaus AD et al (2004) Timing of infection and prior immunization with respiratory syncytial virus (RSV) in RSV-enhanced allergic inflammation. J Infect Dis 189:1866–1872

    Article  CAS  PubMed  Google Scholar 

  38. Becker Y (2006) Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy–a review. Virus Genes 33:235–252

    CAS  PubMed  Google Scholar 

  39. Rosenberg HF, Dyer KD, Domachowske JB (2009) Respiratory viruses and eosinophils: exploring the connections. Antiviral Res 83:1–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Stevens WW, Sun J, Castillo JP, Braciale TJ (2009) Pulmonary eosinophilia is attenuated by early responding CD8(+) memory T cells in a murine model of RSV vaccine-enhanced disease. Viral Immunol 22:243–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Prince GA, Jenson AB, Hemming VG, Murphy BR, Walsh EE et al (1986) Enhancement of respiratory syncytial virus pulmonary pathology in cotton rats by prior intramuscular inoculation of formalin-inactivated virus. J Virol 57:721–728

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Abigail Betanzos for her assistance during the project, and Susan Watson for editing the manuscript. This study was supported by a grant from the National Institute of Allergy and Infectious Disease, by a Grant-in-Aid for Specially Promoted Research, by a contract research fund for the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology, by grants-in-aid from the Ministry of Health, by ERATO (Japan Science and Technology Agency), and by the Advanced Research for Medical Products Mining Programme of the National Institute of Biomedical Innovation (NIBIO). This work was, in part, also funded by the Institute of Science and Technology of Federal District Icyt-DF (project number, ICyT-DF23/2011). W.F. received financial support from the National Council on Science and Technology of Mexico (Conacyt-Mexico) and from the Fulbright-García Robles program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Makoto Ozawa or Yoshihiro Kawaoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, W., Ozawa, M., Hatta, M. et al. A recombinant influenza virus vaccine expressing the F protein of respiratory syncytial virus. Arch Virol 159, 1067–1077 (2014). https://doi.org/10.1007/s00705-013-1932-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1932-z

Keywords

Navigation