Skip to main content

Advertisement

Log in

Engineered retroviral virus-like particles for receptor targeting

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Retroviral gag proteins, as well as fragments minimally containing the capsid (CA) and nucleocapsid (NC) subunits of Gag, are able to spontaneously assemble into virus-like particles (VLPs). This occurs in mammalian and bacterial cells as well as in in vitro systems. In every circumstance, nucleic acids are incorporated into the forming particles. Here, we took advantage of an in vitro system for the generation of non-enveloped Mason-Pfizer monkey virus (M-PMV) VLPs derived from a self-assembling CA-NC subunit of Gag. These VLPs were modified through N-terminal extension of CA-NC with short oligopeptides that, after the assembly process, were exposed on the surface of VLPs. The employed N-terminal modifications allowed specific interaction with target cells expressing prostate-specific membrane antigen. Using this system, we were able to incorporate selected siRNA into forming VLPs and deliver it into the cytosol of target cells. In comparison with other viral vectors designed for targeted transgene delivery, this M-PMV VLP system represents the lowest risk of generating virus-associated pathology, as the VLPs do not contain any viral coding sequences and are formed in a cell-free system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anson DS (2004) The use of retroviral vectors for gene therapy-what are the risks? A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. Genet Vaccines Ther 2:9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Arad U, Zeira E, El-Latif MA, Mukherjee S, Mitchell L, Pappo O, Galun E, Oppenheim A (2005) Liver-targeted gene therapy by SV40-based vectors using the hydrodynamic injection method. Hum Gene Ther 16:361–371

    Article  PubMed  CAS  Google Scholar 

  3. Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL, Brinker CJ, Caldeira Jdo C, Chackerian B, Wharton W, Peabody DS (2011) Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5:5729–5745

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Bharat TA, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M, Sachse C, Ruml T, Briggs JA (2012) Structure of the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature 487:385–389

    Article  PubMed  CAS  Google Scholar 

  5. Bouard D, Alazard-Dany D, Cosset FL (2009) Viral vectors: from virology to transgene expression. Brit J Pharmacol 157:153–165

    Article  CAS  Google Scholar 

  6. Boura E, Liebl D, Spisek R, Fric J, Marek M, Stokrova J, Holan V, Forstova J (2005) Polyomavirus EGFP-pseudocapsids: analysis of model particles for introduction of proteins and peptides into mammalian cells. FEBS Lett 579:6549–6558

    Article  PubMed  CAS  Google Scholar 

  7. Buning H, Ried MU, Perabo L, Gerner FM, Huttner NA, Enssle J, Hallek M (2003) Receptor targeting of adeno-associated virus vectors. Gene Ther 10:1142–1151

    Article  PubMed  CAS  Google Scholar 

  8. Campbell S, Vogt VM (1995) Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J Virol 69:6487–6497

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Campos-Olivas R, Newman JL, Summers MF (2000) Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. J Mol Biol 296:633–649

    Article  PubMed  CAS  Google Scholar 

  10. Castagliuolo I, Beggiao E, Brun P, Barzon L, Goussard S, Manganelli R, Grillot-Courvalin C, Palu G (2005) Engineered E. coli delivers therapeutic genes to the colonic mucosa. Gene Ther 12:1070–1078

    Article  PubMed  CAS  Google Scholar 

  11. Clark B, Caparros-Wanderley W, Musselwhite G, Kotecha M, Griffin BE (2001) Immunity against both polyomavirus VP1 and a transgene product induced following intranasal delivery of VP1 pseudocapsid-DNA complexes. J Gen Virol 82:2791–2797

    PubMed  CAS  Google Scholar 

  12. Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204

    Article  PubMed  CAS  Google Scholar 

  13. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. de Marco A, Davey NE, Ulbrich P, Phillips JM, Lux V, Riches JD, Fuzik T, Ruml T, Krausslich HG, Vogt VM, Briggs JA (2010) Conserved and variable features of Gag structure and arrangement in immature retrovirus particles. J Virol 84:11729–11736

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Dormond E, Perrier M, Kamen A (2009) From the first to the third generation adenoviral vector: what parameters are governing the production yield? Biotechnol Adv 27:133–144

    Article  PubMed  CAS  Google Scholar 

  16. Freund R, Garcea RL, Sahli R, Benjamin TL (1991) A single-amino-acid substitution in polyomavirus VP1 correlates with plaque size and hemagglutination behavior. J Virol 65:350–355

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Gallardo HF, Tan C, Ory D, Sadelain M (1997) Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudo transduction in human peripheral blood lymphocytes. Blood 90:952–957

    PubMed  CAS  Google Scholar 

  18. Gleiter S, Stubenrauch K, Lilie H (1999) Changing the surface of a virus shell fusion of an enzyme to polyoma VP1. Protein Sci 8:2562–2569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Gleiter S, Lilie H (2001) Coupling of antibodies via protein Z on modified polyoma virus-like particles. Protein Sci 10:434–444

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Greenstein D, Brent R (2001) Introduction to vectors derived from filamentous phages. Curr Protoc Mol Biol 1:114

    Google Scholar 

  21. Gross I, Hohenberg H, Krausslich HG (1997) In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur J Biochem 249:592–600

    Article  PubMed  CAS  Google Scholar 

  22. Hedley SJ, Auf der Maur A, Hohn S, Escher D, Barberis A, Glasgow JN, Douglas JT, Korokhov N, Curiel DT (2006) An adenovirus vector with a chimeric fiber incorporating stabilized single chain antibody achieves targeted gene delivery. Gene Ther 13:88–94

    Article  PubMed  CAS  Google Scholar 

  23. Heidari S, Krauzewicz N, Kalantari M, Vlastos A, Griffin BE, Dalianis T (2000) Persistence and tissue distribution of DNA in normal and immunodeficient mice inoculated with polyomavirus VP1 pseudocapsid complexes or polyomavirus. J Virol 74:11963–11965

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14:107–115

    Article  PubMed  CAS  Google Scholar 

  25. Chu TC, Marks JW 3rd, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD, Levy M (2006) Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992

    Article  PubMed  CAS  Google Scholar 

  26. Jozkowicz A, Dulak J, Nanobashvili J, Polterauer P, Prager M, Huk I (2002) Gutless adenoviral vectors, promising tools for gene therapy “Gutless”-adenoviren—ein vielversprechender Vektor für die Gentherapie. Eur Surg 34:95–100

    Article  Google Scholar 

  27. Kaczmarczyk SJ, Sitaraman K, Young HA, Hughes SH, Chatterjee DK (2011) Protein delivery using engineered virus-like particles. Proc Natl Acad Sci USA 108:16998–17003

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kawakami Y, Li H, Lam JT, Krasnykh V, Curiel DT, Blackwell JL (2003) Substitution of the adenovirus serotype 5 knobs with a serotype 3 knob enhances multiple steps in virus replication. Cancer Res 63:1262–1269

    PubMed  CAS  Google Scholar 

  29. Kimchi-Sarfaty C, Arora M, Sandalon Z, Oppenheim A, Gottesman MM (2003) High cloning capacity of in vitro packaged SV40 vectors with no SV40 virus sequences. Hum Gene Ther 14:167–177

    Article  PubMed  CAS  Google Scholar 

  30. Kimchi-Sarfaty C, Gottesman MM (2004) SV40 pseudovirions as highly efficient vectors for gene transfer and their potential application in cancer therapy. Curr Pharm Biotechnol 5:451–458

    Article  PubMed  CAS  Google Scholar 

  31. Klikova M, Rhee SS, Hunter E, Ruml T (1995) Efficient in vivo and in vitro assembly of retroviral capsids from Gag precursor proteins expressed in bacteria. J Virol 69:1093–1098

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Kozarsky KF, Wilson JM (1993) Gene therapy: adenovirus vectors. Curr Opin Genet Dev 3:499–503

    Article  PubMed  CAS  Google Scholar 

  33. Krauzewicz N, Cox C, Soeda E, Clark B, Rayner S, Griffin BE (2000) Sustained ex vivo and in vivo transfer of a reporter gene using polyoma virus pseudocapsids. Gene Ther 7:1094–1102

    Article  PubMed  CAS  Google Scholar 

  34. Krauzewicz N, Stokrova J, Jenkins C, Elliott M, Higgins CF, Griffin BE (2000) Virus-like gene transfer into cells mediated by polyoma virus pseudocapsids. Gene Ther 7:2122–2131

    Article  PubMed  CAS  Google Scholar 

  35. Kuznetsov YG, Ulbrich P, Haubova S, Ruml T, McPherson A (2007) Atomic force microscopy investigation of Mason-Pfizer monkey virus and human immunodeficiency virus type 1 reassembled particles. Virology 360:434–446

    Article  PubMed  CAS  Google Scholar 

  36. Larocca D, Jensen-Pergakes K, Burg MA, Baird A (2001) Receptor-targeted gene delivery using multivalent phagemid particles. Mol Ther 3:476–484

    Article  PubMed  CAS  Google Scholar 

  37. Lee H, Song JJ, Kim E, Yun CO, Choi J, Lee B, Kim J, Chang JW, Kim JH (2001) Efficient gene transfer of VSV-G pseudotyped retroviral vector to human brain tumor. Gene Ther 8:268–273

    Article  PubMed  CAS  Google Scholar 

  38. Lee YJ, Johnson G, Peltier GC, Pellois JP (2011) A HA2-Fusion tag limits the endosomal release of its protein cargo despite causing endosomal lysis. BBA-Gen Sub 1810:752–758

    Article  CAS  Google Scholar 

  39. Lundstrom K (2003) Latest development in viral vectors for gene therapy. Trends Biotechnol 21:117–122

    Article  PubMed  CAS  Google Scholar 

  40. Lupold SE, Rodriguez R (2004) Disulfide-constrained peptides that bind to the extracellular portion of the prostate-specific membrane antigen. Mol Cancer Ther 3:597–603

    PubMed  CAS  Google Scholar 

  41. Mannisto M, Vanderkerken S, Toncheva V, Elomaa M, Ruponen M, Schacht E, Urtti A (2002) Structure-activity relationships of poly(l-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release 83:169–182

    Article  PubMed  CAS  Google Scholar 

  42. McTaggart S, Al-Rubeai M (2002) Retroviral vectors for human gene delivery. Biotechnol Adv 20:1–31

    Article  PubMed  CAS  Google Scholar 

  43. Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q, Allen H, Franlin L, Parks RJ, Graham FL, Kochanek S, Bett AJ, Caskey CT (1998) An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA 95:7866–7871

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Moyer CL, Nemerow GR (2011) Viral weapons of membrane destruction: variable modes of membrane penetration by non-enveloped viruses. Curr Opin Virol 1:44–49

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Nayak S, Herzog RW (2010) Progress and prospects: immune responses to viral vectors. Gene Ther 17:295–304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Nemunaitis J, Cunningham C, Tong AW, Post L, Netto G, Paulson AS, Rich D, Blackburn A, Sands B, Gibson B, Randlev B, Freeman S (2003) Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther 10:341–352

    Article  PubMed  CAS  Google Scholar 

  47. Palmer D, Ng P (2003) Improved system for helper-dependent adenoviral vector production. Mol Ther 8:846–852

    Article  PubMed  CAS  Google Scholar 

  48. Parker SD, Hunter E (2000) A cell-line-specific defect in the intracellular transport and release of assembled retroviral capsids. J Virol 74:784–795

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Pereboev AV, Nagle JM, Shakhmatov MA, Triozzi PL, Matthews QL, Kawakami Y, Curiel DT, Blackwell JL (2004) Enhanced gene transfer to mouse dendritic cells using adenoviral vectors coated with a novel adapter molecule. Mol Ther 9:712–720

    Article  PubMed  CAS  Google Scholar 

  50. Ramqvist T, Andreasson K, Dalianis T (2007) Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin Biol Ther 7:997–1007

    Article  PubMed  CAS  Google Scholar 

  51. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, Wilson JM, Batshaw ML (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    Article  PubMed  CAS  Google Scholar 

  52. Reiser J, Lai Z, Zhang XY, Brady RO (2000) Development of multigene and regulated lentivirus vectors. J Virol 74:10589–10599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Rumlova-Klikova M, Hunter E, Nermut MV, Pichova I, Ruml T (2000) Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J Virol 74:8452–8459

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Rumlova M (2003) Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection. Virology 310:310–318

    Article  PubMed  CAS  Google Scholar 

  55. Sakalian M, Parker SD, Weldon RA Jr, Hunter E (1996) Synthesis and assembly of retrovirus Gag precursors into immature capsids in vitro. J Virol 70:3706–3715

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Schnierle BS, Stitz J, Bosch V, Nocken F, Merget-Millitzer H, Engelstadter M, Kurth R, Groner B, Cichutek K (1997) Pseudotyping of murine leukemia virus with the envelope glycoproteins of HIV generates a retroviral vector with specificity of infection for CD4-expressing cells. Proc Natl Acad Sci USA 94:8640–8645

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Stubenrauch K, Bachmann A, Rudolph R, Lilie H (2000) Purification of a viral coat protein by an engineered polyionic sequence. J Chromatogr B 737:77–84

    Article  CAS  Google Scholar 

  58. Tai CK, Logg CR, Park JM, Anderson WF, Press MF, Kasahara N (2003) Antibody-mediated targeting of replication-competent retroviral vectors. Hum Gene Ther 14:789–802

    Article  PubMed  CAS  Google Scholar 

  59. Tong GJ, Hsiao SC, Carrico ZM, Francis MB (2009) Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J Am Chem Soc 131:11174–11178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Ulbrich P, Haubova S, Nermut MV, Hunter E, Rumlova M, Ruml T (2006) Distinct roles for nucleic acid in in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins. J Virol 80:7089–7099

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  62. Verma IM, Weitzman MD (2005) Gene therapy: twenty-first century medicine. Annu Rev Biochem 74:711–738

    Article  PubMed  CAS  Google Scholar 

  63. Voelkel C, Galla M, Maetzig T, Warlich E, Kuehle J, Zychlinski D, Bode J, Cantz T, Schambach A, Baum C (2010) Protein transduction from retroviral Gag precursors. Proc Natl Acad Sci USA 107:7805–7810

    Article  PubMed Central  PubMed  Google Scholar 

  64. Vorackova I, Suchanova S, Ulbrich P, Diehl WE, Ruml T (2011) Purification of proteins containing zinc finger domains using immobilized metal ion affinity chromatography. Protein Expres Purif 79:88–95

    Article  CAS  Google Scholar 

  65. Vorburger SA (2002) Adenoviral gene therapy. Oncologist 7:46–59

    Article  PubMed  CAS  Google Scholar 

  66. Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23:1418–1423

    Article  PubMed  CAS  Google Scholar 

  67. Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKenna M, Ferkol T, Flotte T, Muzyczka N (2000) Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 74:8635–8647

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Yamada T, Iwasaki Y, Tada H, Iwabuki H, Chuah MK, VandenDriessche T, Fukuda H, Kondo A, Ueda M, Seno M, Tanizawa K, Kuroda S (2003) Nanoparticles for the delivery of genes and drugs to human hepatocytes. Nat Biotechnol 21:885–890

    Article  PubMed  CAS  Google Scholar 

  69. Yi SW, Yune TY, Kim TW, Chung H, Choi YW, Kwon IC, Lee EB, Jeong SY (2000) A cationic lipid emulsion/DNA complex as a physically stable and serum-resistant gene delivery system. Pharm Res 17:314–320

    Article  PubMed  CAS  Google Scholar 

  70. Zavada J (1972) VSV pseudotype particles with the coat of avian myeloblastosis virus. Nature 240:122–124

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Michaela Rumlova for kindly providing expression plasmids and polyclonal anti-capsid protein antibody, and Jan Konvalinka for kindly providing stably transfected HEK 293T cells. This research was supported financially by Czech Science Foundation grant P302/12/1895 and Czech Ministry of Education grant LH12011.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pavel Ulbrich or Tomáš Ruml.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voráčková, I., Ulbrich, P., Diehl, W.E. et al. Engineered retroviral virus-like particles for receptor targeting. Arch Virol 159, 677–688 (2014). https://doi.org/10.1007/s00705-013-1873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1873-6

Keywords

Navigation