Skip to main content
Log in

The N-terminal region containing the zinc finger domain of tobacco streak virus coat protein is essential for the formation of virus-like particles

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Tobacco streak virus (TSV), a member of the genus Ilarvirus (family Bromoviridae), has a tripartite genome and forms quasi-isometric virions. All three viral capsids, encapsidating RNA 1, RNA 2 or RNA 3 and subgenomic RNA 4, are constituted of a single species of coat protein (CP). Formation of virus-like particles (VLPs) could be observed when the TSV CP gene was cloned and the recombinant CP (rCP) was expressed in E. coli. TSV VLPs were found to be stabilized by Zn2+ ions and could be disassembled in the presence of 500 mM CaCl2. Mutational analysis corroborated previous studies that showed that an N-terminal arginine-rich motif was crucial for RNA binding; however, the results presented here demonstrate that the presence of RNA is not a prerequisite for assembly of TSV VLPs. Instead, the N-terminal region containing the zinc finger domain preceding the arginine-rich motif is essential for assembly of these VLPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anindya R, Savithri HS (2003) Surface-exposed amino- and carboxy-terminal residues are crucial for the initiation of assembly in Pepper vein banding virus: a flexuous rod-shaped virus. Virology 316:325–336

    Article  CAS  PubMed  Google Scholar 

  2. Ansel-McKinney P, Scott SW, Swanson M, Ge X, Gehrke L (1996) A plant viral coat protein RNA binding consensus sequence contains a crucial arginine. EMBO J 15:5077–5084

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Aparicio F, Vilar M, Perez-Paya E, Pallas V (2003) The coat protein of prunus necrotic ringspot virus specifically binds to and regulates the conformation of its genomic RNA. Virology 313:213–223

    Article  CAS  PubMed  Google Scholar 

  4. Aparicio F, Sanchez-Navarro JA, Pallas V (2006) In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation. J Gen Virol 87:1745–1750

    Article  CAS  PubMed  Google Scholar 

  5. Bol JF (1999) Alfalfa mosaic virus and ilarviruses: involvement of coat protein in multiple steps of the replication cycle. J Gen Virol 80(Pt 5):1089–1102

    CAS  PubMed  Google Scholar 

  6. Bol JF (2005) Replication of alfamo- and ilarviruses: role of the coat protein. Annu Rev Phytopathol 43:39–62

    Article  CAS  PubMed  Google Scholar 

  7. Chen C, Kao CC, Dragnea B (2008) Self-assembly of brome mosaic virus capsids: insights from shorter time-scale experiments. J Phys Chem A 112:9405–9412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Clark MF, Lister RM (1971) Preparation and some properties of the nucleic acid of tobacco streak virus. Virology 45:61–74

    Article  CAS  PubMed  Google Scholar 

  9. Cornelissen BJ, Janssen H, Zuidema D, Bol JF (1984) Complete nucleotide sequence of tobacco streak virus RNA 3. Nucleic Acids Res 12:2427–2437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ding SW, Li WX, Symons RH (1995) A novel naturally occurring hybrid gene encoded by a plant RNA virus facilitates long distance virus movement. EMBO J 14:5762–5772

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Driedonks RA, Krijgsman PC, Mellema JE (1977) Alfalfa mosaic virus protein polymerization. J Mol Biol 113:123–140

    Article  CAS  PubMed  Google Scholar 

  12. Edwardson JR, Purcifull DE (1974) Relationship of Datura quercina and Tobacco streak viruses. Phytopathology 64:1322–1324

    Article  Google Scholar 

  13. Fulton RW (1967) Purification and some properties of tobacco streak and Tulare apple mosaic viruses. Virology 32:153–162

    Article  CAS  PubMed  Google Scholar 

  14. Ge X, Scott SW, Zimmerman MT (1997) The complete sequence of the genomic RNAs of spinach latent virus. Arch Virol 142:1213–1226

    Article  CAS  PubMed  Google Scholar 

  15. Hema M, Murali A, Ni P, Vaughan RC, Fujisaki K, Tsvetkova I, Dragnea B, Kao CC (2010) Effects of amino-acid substitutions in the Brome mosaic virus capsid protein on RNA encapsidation. Mol Plant Microbe Interact 23:1433–1447

    Article  CAS  PubMed  Google Scholar 

  16. Johnson JM, Willits DA, Young MJ, Zlotnick A (2004) Interaction with capsid protein alters RNA structure and the pathway for in vitro assembly of cowpea chlorotic mottle virus. J Mol Biol 335:455–464

    Article  CAS  PubMed  Google Scholar 

  17. Kumar A, Reddy VS, Yusibov V, Chipman PR, Hata Y, Fita I, Fukuyama K, Rossmann MG, Loesch-Fries LS, Baker TS, Johnson JE (1997) The structure of alfalfa mosaic virus capsid protein assembled as a T=1 icosahedral particle at 4.0-A resolution. J Virol 71:7911–7916

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Kurstak E (1981) Handbook of plant virus infections: comparative diagnosis. Elsevier/Noth Holland Biomedical Press, Amsterdam

  19. Larson SB, Lucas RW, McPherson A (2005) Crystallographic structure of the T=1 particle of brome mosaic virus. J Mol Biol 346:815–831

    Article  CAS  PubMed  Google Scholar 

  20. Lavelle L, Michel JP, Gingery M (2007) The disassembly, reassembly and stability of CCMV protein capsids. J Virol Methods 146:311–316

    Article  CAS  PubMed  Google Scholar 

  21. Lister RM, Bancroft JB (1970) Alteration of Tobacco streak virus component ratio influenced by host and extraction procedure. Phytopathology 60:689–694

    Article  CAS  Google Scholar 

  22. Lister RM, Ghabrial SA, Saksena KN (1972) Evidence that particle size heterogeneity is the cause of centrifugal heterogeneity in tobacco streak virus. Virology 49:290–299

    Article  CAS  PubMed  Google Scholar 

  23. Lokesh GL, Gowri TD, Satheshkumar PS, Murthy MR, Savithri HS (2002) A molecular switch in the capsid protein controls the particle polymorphism in an icosahedral virus. Virology 292:211–223

    Article  CAS  PubMed  Google Scholar 

  24. Lucas RW, Larson SB, McPherson A (2002) The crystallographic structure of brome mosaic virus. J Mol Biol 317:95–108

    Article  CAS  PubMed  Google Scholar 

  25. Pallas V, Sanchez-Navarro JA, Diez J (1999) In vitro evidence for RNA binding properties of the coat protein of prunus necrotic ringspot ilarvirus and their comparison to related and unrelated viruses. Arch Virol 144:797–803

    Article  CAS  PubMed  Google Scholar 

  26. Phelps JP, Dao P, Jin H, Rasochova L (2007) Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens. J Biotechnol 128:290–296

    Article  CAS  PubMed  Google Scholar 

  27. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  PubMed  Google Scholar 

  28. Reddy AS, Prasad Rao RDVJ, Thirumala-Devi K, Reddy SV, Mayo MA, Roberts I, Satyanarayana T, Subramaniam K, Reddy DVR (2002) Occurrence of Tobacco streak virus on Peanut (Arachis hypogaea) in India. Plant Disease 86:173–178

    Article  CAS  Google Scholar 

  29. Sastri M, Kekuda R, Gopinath K, Kumar CT, Jagath JR, Savithri HS (1997) Assembly of physalis mottle virus capsid protein in Escherichia coli and the role of amino and carboxy termini in the formation of the icosahedral particles. J Mol Biol 272:541–552

    Article  CAS  PubMed  Google Scholar 

  30. Satheshkumar PS, Lokesh GL, Sangita V, Saravanan V, Vijay CS, Murthy MR, Savithri HS (2004) Role of metal ion-mediated interactions in the assembly and stability of Sesbania mosaic virus T=3 and T=1 capsids. J Mol Biol 342:1001–1014

    Article  CAS  PubMed  Google Scholar 

  31. Scott SW, Zimmerman MT, Ge X (1998) The sequence of RNA 1 and RNA 2 of tobacco streak virus: additional evidence for the inclusion of alfalfa mosaic virus in the genus Ilarvirus. Arch Virol 143:1187–1198

    Article  CAS  PubMed  Google Scholar 

  32. Scott SW (2001) AAB Description of Plant Viruses. 381

  33. Sdoodee R, Teakle DS (1993) Studies on the mechanism of transmission of pollen-associated tobacco streak ilarvirus virus by Thrips tabaci. Plant Pathol 42:88–92

    Article  Google Scholar 

  34. Sehnke PC, Mason AM, Hood SJ, Lister RM, Johnson JE (1989) A “zinc-finger”-type binding domain in tobacco streak virus coat protein. Virology 168:48–56

    Article  CAS  PubMed  Google Scholar 

  35. Sehnke PC, Johnson JE (1993) Crystallization and preliminary X-ray characterization of tobacco streak virus and a proteolytically modified form of the capsid protein. Virology 196:328–331

    Article  CAS  PubMed  Google Scholar 

  36. Sehnke PC, Johnson JE (1994) A chromatographic analysis of capsid protein isolated from alfalfa mosaic virus: zinc binding and proteolysis cause distinct charge heterogeneity. Virology 204:843–846

    Article  CAS  PubMed  Google Scholar 

  37. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78

    Article  CAS  PubMed  Google Scholar 

  38. Swanson MM, Ansel-McKinney P, Houser-Scott F, Yusibov V, Loesch-Fries LS, Gehrke L (1998) Viral coat protein peptides with limited sequence homology bind similar domains of alfalfa mosaic virus and tobacco streak virus RNAs. J Virol 72:3227–3234

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Tama F, Brooks CL 3rd (2002) The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. J Mol Biol 318:733–747

    Article  CAS  PubMed  Google Scholar 

  40. Tang J, Johnson JM, Dryden KA, Young MJ, Zlotnick A, Johnson JE (2006) The role of subunit hinges and molecular “switches” in the control of viral capsid polymorphism. J Struct Biol 154:59–67

    Article  CAS  PubMed  Google Scholar 

  41. Terribilini M, Sander JD, Lee JH, Zaback P, Jernigan RL, Honavar V, Dobbs D (2007) RNABindR: a server for analyzing and predicting RNA-binding sites in proteins. Nucleic Acids Res 35:W578–W584

    Article  PubMed Central  PubMed  Google Scholar 

  42. van Vloten-doting L (1975) Coat protein is required for infectivity of tobacco streak virus: Biological equivalence of the coat proteins of tobacco streak and alfalfa mosaic viruses. Virology 65:215–225

    Article  PubMed  Google Scholar 

  43. Xin HW, Ji LH, Scott SW, Symons RH, Ding SW (1998) Ilarviruses encode a Cucumovirus-like 2b gene that is absent in other genera within the Bromoviridae. J Virol 72:6956–6959

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Yusibov V, Kumar A, North A, Johnson JE, Loesch-Fries LS (1996) Purification, characterization, assembly and crystallization of assembled alfalfa mosaic virus coat protein expressed in Escherichia coli. J Gen Virol 77(Pt 4):567–573

    Article  CAS  PubMed  Google Scholar 

  45. Zlotnick A, Aldrich R, Johnson JM, Ceres P, Young MJ (2000) Mechanism of capsid assembly for an icosahedral plant virus. Virology 277:450–456

    Article  CAS  PubMed  Google Scholar 

  46. Zlotnick A (2003) Are weak protein-protein interactions the general rule in capsid assembly? Virology 315:269–274

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. S. S. Indi, Dept. of Microbiology and Cell Biology, IISc, for his assistance in electron microscopy. We thank Department of Biotechnology and Department of Science and Technology (J.C. Bose fellowship to HSS), New Delhi, India, for the financial support. CM thanks CSIR, New Delhi, for Junior and Senior Research fellowships. We thank Prof. M.R.N. Murthy for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Handanahal S. Savithri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1223 kb) Supplementary Table S1: List of primers used for cloning and RT-PCR

705_2013_1822_MOESM2_ESM.tif

Supplementary material 2 (TIFF 612 kb) Supplementary Fig. S1 Analysis of TSV CP (a) Mass spectrometric analysis of purified recombinant TSV CP (molecular sizes of monomer and dimer peaks are indicated). (b) Glutaraldehyde crosslinking of TSV CP. TSV coat protein (10 μg) was incubated with 0.01 % glutaraldehyde (Sigma) for 1 h in the dark. The samples were then separated by 10 % SDS-PAGE and stained with CBB R250. Lane 1, TSV CP; lane 2, glutaraldehyde-crosslinked TSV CP

705_2013_1822_MOESM3_ESM.tif

Supplementary material 3 (TIFF 3595 kb) Supplementary Fig. S2 Deletion mutants of TSV CP (a) Amino acid sequence of TSV CP indicating the positions where deletions were created. Underlined, zinc-finger domain; bold, RNA-binding N-ARM. (b) SDS-PAGE analysis of TSV CP and its deletion mutants. Lane 1, molecular mass (kDa) markers; lane 2, purified Ndel48 CP; lane 3, purified Ndel26 CP; lane 4, purified Ndel86 CP. (c) Lane 1, uninduced fraction – TSV CP; lane 2, induced fraction – TSV CP; lane 3, uninduced fraction –Cdel38 CP; lane 4, induced fraction – Cdel38 CP; lane 5, uninduced fraction – Cdel55 CP; lane 6, induced fraction – Cdel55 CP; lane 7, uninduced fraction – Cdel74 CP; lane 8, induced fraction – Cdel74 CP; lane 9, molecular mass (kDa) markers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathur, C., Mohan, K., Usha Rani, T.R. et al. The N-terminal region containing the zinc finger domain of tobacco streak virus coat protein is essential for the formation of virus-like particles. Arch Virol 159, 413–423 (2014). https://doi.org/10.1007/s00705-013-1822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1822-4

Keywords

Navigation