Advertisement

Archives of Virology

, Volume 159, Issue 3, pp 399–404 | Cite as

Contamination of live attenuated vaccines with an infectious feline endogenous retrovirus (RD-114 virus)

  • Rokusuke Yoshikawa
  • Sayumi Shimode
  • Shoichi Sakaguchi
  • Takayuki MiyazawaEmail author
Brief Review

Abstract

Retroviruses are classified as exogenous and endogenous retroviruses according to the mode of transmission. Endogenous retroviruses (ERVs) are retroviruses which have been integrated into germ-line cells and inherited from parents to offspring. Most ERVs are inactivated by deletions and mutations; however, certain ERVs maintain their infectivity and infect the same host and new hosts as exogenous retroviruses. All domestic cats have infectious ERVs, termed RD-114 virus. Several canine and feline attenuated vaccines are manufactured using RD-114 virus-producing cell lines such as Crandell-Rees feline kidney cells; therefore, it is possible that infectious RD-114 virus contaminates live attenuated vaccines. Recently, Japanese and UK research groups found that several feline and canine vaccines were indeed contaminated with infectious RD-114 virus. This was the first incidence of contamination of ‘infectious’ ERVs in live attenuated vaccines. RD-114 virus replicates efficiently in canine cell lines and primary cells. Therefore, it is possible that RD-114 virus infects dogs following inoculation with contaminated vaccines and induces proliferative diseases and immune suppression, if it adapts to grow efficiently in dogs. In this review, we summarize the incidence of contamination of RD-114 virus in live attenuated vaccines and potential risks of infection with RD-114 virus in dogs.

Keywords

Yellow Fever Vaccine Reverse Transcriptase Assay CRFK Cell Canine Cell Line Spleen Necrosis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Peter Gee (Kyoto University) for his generous help in the preparation of this manuscript. This work was supported by grants from the Japan Society for the Promotion of Science and from the Bio-Oriented Technology Research Advancement Institution in Japan, and by contributions from Kyoritsu Seiyaku Corporation (Chiyoda-ku, Tokyo, Japan), Merial Japan (Chiyoda-ku, Tokyo, Japan), and Nisseiken Co. Ltd. (Ome, Tokyo, Japan).

Supplementary material

705_2013_1809_MOESM1_ESM.ppt (877 kb)
Supplementary material 1 (PPT 877 kb)

References

  1. 1.
    Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA, Amara SG (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268:15329–15332PubMedGoogle Scholar
  2. 2.
    Baumann JG, Günzburg WH, Salmons B (1998) CrFK feline kidney cells produce an RD114-like endogenous virus that can package murine leukemia virus-based vectors. J Virol 72:7685–7687PubMedCentralPubMedGoogle Scholar
  3. 3.
    Benveniste RE, Callahan R, Sherr CJ, Chapman V, Todaro GJ (1977) Two distinct endogenous type C viruses isolated from the Asian rodent Mus cervicolor: conservation of virogene sequences in related rodent species. J Virol 21:849–862PubMedCentralPubMedGoogle Scholar
  4. 4.
    Benveniste RE, Todaro GJ (1974) Evolution of C-type viral genes: inheritance of exogenously acquired viral genes. Nature 252:456–459PubMedCrossRefGoogle Scholar
  5. 5.
    Blaise S, Mangeney M, Heidmann T (2001) The envelope of Mason-Pfizer monkey virus has immunosuppressive properties. J Gen Virol 82:1597–1600PubMedGoogle Scholar
  6. 6.
    Boeke JD, Stoye JP (1997) Retrotransposons, endogenous retroviruses, and the evolution of retroelements. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 343–435Google Scholar
  7. 7.
    Cheney CM, Rojko JL, Kociba GJ, Wellman ML, Di Bartola SP, Rezanka LJ, Forman L, Mathes LE (1990) A feline large granular lymphoma and its derived cell line. In Vitro Cell Dev Biol 26:455–463PubMedCrossRefGoogle Scholar
  8. 8.
    Cianciolo GJ, Copeland TD, Oroszlan S, Snyderman R (1985) Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science 230:453–455PubMedCrossRefGoogle Scholar
  9. 9.
    Cui J, Tachedjian G, Tachedjian M, Holmes EC, Zhang S, Wang LF (2012) Identification of diverse groups of endogenous gammaretroviruses in mega- and microbats. J Gen Virol 93:2037–2045PubMedCrossRefGoogle Scholar
  10. 10.
    Denner J (2007) Transspecies transmissions of retroviruses: new cases. Virology 369:229–233PubMedCrossRefGoogle Scholar
  11. 11.
    Fiebig U, Hartmann MG, Bannert N, Kurth R, Denner J (2006) Transspecies transmission of the endogenous koala retrovirus. J Virol 80:5651–5654PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Fischinger PJ, Peebles PT, Nomura S, Haapala DK (1973) Isolation of RD-114-like oncornavirus from a cat cell line. J Virol 11:978–985PubMedCentralPubMedGoogle Scholar
  13. 13.
    Green BJ, Lee CS, Rasko JE (2004) Biodistribution of the RD114/mammalian type D retrovirus receptor, RDR. J Gene Med 6:249–259PubMedCrossRefGoogle Scholar
  14. 14.
    Gifford R, Tristem M (2003) The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26:291–315PubMedCrossRefGoogle Scholar
  15. 15.
    Griffiths DJ (2001) Endogenous retroviruses and the human genome sequence. Gen Biol 2:1017.1–1017.5CrossRefGoogle Scholar
  16. 16.
    Hussain AI, Johnson JA, Da Silva Freire M, Heneine W (2003) Identification and characterization of avian retroviruses in chicken embryo-derived yellow fever vaccines: investigation of transmission to vaccine recipients. J Virol 77:1105–1111PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  18. 18.
    Lieber MM, Sherr CJ, Todaro GJ, Benveniste RE, Callahan R, Coon HG (1975) Isolation from the asian mouse Mus caroli of an endogenous type C virus related to infectious primate type C viruses. Proc Natl Acad Sci USA 72:2315–2319PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Mang R, Goudsmit J, van der Kuyl AC (1999) Novel endogenous type C retrovirus in baboons: complete sequence, providing evidence for baboon endogenous virus gag-pol ancestry. J Virol 73:7021–7026PubMedCentralPubMedGoogle Scholar
  20. 20.
    Marin M, Lavillette D, Kelly SM, Kabat D (2003) N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions. J Virol 77:2936–2945PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Marx PA, Bryant ML, Osborn KG, Maul DH, Lerche NW, Lowenstine LJ, Kluge JD, Zaiss CP, Henrickson RV, Shiigi SM, Wilson BJ, Malley A, Olson LC, McNulty WP, Arthur LO, Gilden RV, Barker CS, Hunter E, Munn RJ, Heidecker G, Gardner MB (1985) Isolation of a new serotype of simian acquired immune deficiency syndrome type D retrovirus from Celebes black macaques (Macaca nigra) with immune deficiency and retroperitoneal fibromatosis. J Virol 56:571–578PubMedCentralPubMedGoogle Scholar
  22. 22.
    Marx PA, Maul DH, Osborn KG, Lerche NW, Moody P, Lowenstine LJ, Henrickson RV, Arthur LO, Gilden RV, Gravell M, London WT, Sever JL, Levy AJ, Munn JR, Gardner MB (1984) Simian AIDS: isolation of a type D retrovirus and transmission of the disease. Science 223:1083–1086PubMedCrossRefGoogle Scholar
  23. 23.
    Marx PA, Pedersen NC, Lerche NW, Osborn KG, Lowenstine LJ, Lackner AA, Maul DH, Kwang HS, Kluge JD, Zaiss CP, Sharpe V, Spinner AP, Allison AC, Gardner MB (1986) Prevention of simian acquired immune deficiency syndrome with a formalin-inactivated type D retrovirus vaccine. J Virol 60:431–435PubMedCentralPubMedGoogle Scholar
  24. 24.
    Miyazawa T (2010) Endogenous retroviruses as potential hazards for vaccines. Biologicals 38:371–376PubMedCrossRefGoogle Scholar
  25. 25.
    Miyazawa T, Yoshikawa R, Golder M, Okada M, Stewart H, Palmarini M (2010) Isolation of an infectious endogenous retrovirus in a proportion of live attenuated vaccines for pets. J Virol 84:3690–3694PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Mochizuki M, San Gabriel MC, Nakatani H, Yoshida M, Harasawa R (1993) Comparison of polymerase chain reaction with virus isolation and haemagglutination assays for the detection of canine parvoviruses in faecal specimens. Res Vet Sci 55:60–63PubMedCrossRefGoogle Scholar
  27. 27.
    Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:860–921CrossRefGoogle Scholar
  28. 28.
    Narushima R, Horiuchi N, Usui T, Ogawa T, Takahashi T, Shimazaki T (2011) Experimental infection of dogs with a feline endogenous retrovirus RD-114. Acta Vet Scand 53:3PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Narushima R, Shimazaki T, Takahashi T (2011) Development of a real-time reverse-transcription-PCR method for detection of RD114 virus in canine vaccines. Biologicals 39:89–93PubMedCrossRefGoogle Scholar
  30. 30.
    Narusima R, Usui T, Ogawa T, Shimazaki T (2010) Detection of infectious RD114 virus in feline live multivalent vaccines and provisional safety evaluation in cats. J Jpn Vet Med Assoc 63:630–633 [in Japanese with English summary]Google Scholar
  31. 31.
    Nowinski RC, Hays EF (1978) Oncogenicity of AKR endogenous leukemia viruses. J Virol 27:13–18PubMedCentralPubMedGoogle Scholar
  32. 32.
    Okabe H, Gilden RV, Hatanaka M (1973) RD 114 virus-specific sequences in feline cellular RNA: detection and characterization. J Virol 12:984–994PubMedCentralPubMedGoogle Scholar
  33. 33.
    Okada M, Yoshikawa R, Shojima T, Baba K, Miyazawa T (2011) Susceptibility and production of a feline endogenous retrovirus (RD-114 virus) in various feline cell lines. Virus Res 155:268–273PubMedCrossRefGoogle Scholar
  34. 34.
    Patience C, Takeuchi Y, Weiss RA (1997) Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3:282–286PubMedCrossRefGoogle Scholar
  35. 35.
    Rasko JE, Battini JL, Gottschalk RJ, Mazo I, Miller AD (1999) The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc Natl Acad Sci USA 96:2129–2134PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Roth MG, Srinivas RV, Compans RW (1983) Basolateral maturation of retroviruses in polarized epithelial cells. J Virol 45:1065–1073PubMedCentralPubMedGoogle Scholar
  37. 37.
    Sakaguchi S, Okada M, Shojima T, Baba K, Miyazawa T (2008) Establishment of a LacZ marker rescue assay to detect infectious RD114 virus. J Vet Med Sci 70:785–790PubMedCrossRefGoogle Scholar
  38. 38.
    Shimode S, Yoshikawa R, Hoshino S, Nakaya Y, Sakaguchi S, Kobayashi T, Miyazawa T (2012) Sequence comparison of three infectious molecular clones of RD-114 virus. Virus Genes 45:393–397PubMedCrossRefGoogle Scholar
  39. 39.
    Simmons GS, Young PR, Hanger JJ, Jones K, Clarke D, McKee JJ, Meers J (2012) Prevalence of koala retrovirus in geographically diverse populations in Australia. Aust Vet J 90:404–409PubMedCrossRefGoogle Scholar
  40. 40.
    Tailor CS, Nouri A, Zhao Y, Takeuchi Y, Kabat D (1999) A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. J Virol 73:4470–4474PubMedCentralPubMedGoogle Scholar
  41. 41.
    Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442:79–81PubMedCrossRefGoogle Scholar
  42. 42.
    Tarlinton R, Meers J, Hanger J, Young P (2005) Real-time reverse transcriptase PCR for the endogenous koala retrovirus reveals an association between plasma viral load and neoplastic disease in koalas. J Gen Virol 86:783–787PubMedCrossRefGoogle Scholar
  43. 43.
    Tarlinton R, Meers J, Young P (2008) Biology and evolution of the endogenous koala retrovirus. Cell Mol Life Sci 65:3413–3421PubMedCrossRefGoogle Scholar
  44. 44.
    Ting-De Ravin SS, Kennedy DR, Naumann N, Kennedy JS, Choi U, Hartnett BJ, Linton GF, Whiting-Theobald NL, Moore PF, Vernau W, Malech HL, Felsburg PJ (2006) Correction of canine X-linked severe combined immunodeficiency by in vivo retroviral gene therapy. Blood 107:3091–3097PubMedCrossRefGoogle Scholar
  45. 45.
    Tsang SX, Switzer WM, Shanmugam V, Johnson JA, Goldsmith C, Wright A, Fadly A, Thea D, Jaffe H, Folks TM, Heneine W (1999) Evidence of avian leukosis virus subgroup E and endogenous avian virus in measles and mumps vaccines derived from chicken cells: investigation of transmission to vaccine recipients. J Virol 73:5843–5851PubMedCentralPubMedGoogle Scholar
  46. 46.
    Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271:14883–14890PubMedCrossRefGoogle Scholar
  47. 47.
    Van der Kuyl AC, Dekker JT, Goudsmit J (1999) Discovery of a new endogenous type C retrovirus (FcEV) in cats: evidence for RD-114 being an FcEVGag-Pol/baboon endogenous virus BaEVEnv recombinant. J Virol 73:7994–8002PubMedCentralPubMedGoogle Scholar
  48. 48.
    Yoshikawa R, Sato E, Igarashi T, Miyazawa T (2010) Characterization of RD-114 virus isolated from a commercial canine vaccine manufactured using CRFK cells. J Clin Microbiol 48:3366–3369PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Yoshikawa R, Sato E, Miyazawa T (2011) Contamination of infectious RD-114 virus in vaccines produced using non-feline cell lines. Biologicals 39:33–37PubMedCrossRefGoogle Scholar
  50. 50.
    Yoshikawa R, Sato E, Miyazawa T (2012) Presence of infectious RD-114 virus in a proportion of canine parvovirus isolates. J Vet Med Sci 74:347–350PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshikawa R, Yasuda J, Kobayashi T, Miyazawa T (2012) Canine ASCT1 and ASCT2 are functional receptors for RD-114 virus in dogs. J Gen Virol 93:603–607PubMedCrossRefGoogle Scholar
  52. 52.
    Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G (2012) Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 491:774–778PubMedCentralPubMedGoogle Scholar
  53. 53.
    Yu P, Lübben W, Slomka H, Gebler J, Konert M, Cai C, Neubrandt L, da Costa OP, Paul S, Dehnert S, Döhne K, Thanisch M, Storsberg S, Wiegand L, Kaufmann A, Nain M, Quintanilla-Martinez L, Bettio S, Schnierle B, Kolesnikova L, Becker S, Schnare M, Bauer S (2012) Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37:867–879PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Rokusuke Yoshikawa
    • 1
    • 2
    • 3
  • Sayumi Shimode
    • 1
  • Shoichi Sakaguchi
    • 1
    • 3
  • Takayuki Miyazawa
    • 1
    Email author
  1. 1.Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus ResearchKyoto UniversityKyotoJapan
  2. 2.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan
  3. 3.Research Fellow of the Japan Society for the Promotion of ScienceTokyoJapan

Personalised recommendations