Skip to main content

Advertisement

Log in

Characterization of street rabies virus variants with an additional N-glycan at position 247 in the glycoprotein

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Most street rabies virus glycoproteins (G proteins) possess two N-glycosylation sites, at Asn37 and Asn319, whereas an additional N-glycosylation site is present in several fixed (laboratory-adapted) rabies virus strains at Asn247, which suggests that the N-glycosylation addition may be a marker of fixed viruses. In this study, we successfully cloned two street virus strain 1088 variants, N5B#15 and N5B#10-28, in which the G proteins had an additional N-glycan at position 247, and we examined whether these variants were characterized by cell culture adaptation and attenuation after intramuscular inoculation as fixed viruses. N5B#15 had four mutations, i.e., S148P and D247N in the G protein, and T137A and N2046S in the large (L) protein. N5B#10-28 had an additional mutation in the G protein, R196I. Compared with the parental 1088 virus, both variants exhibited highly efficient replication in mouse neuroblastoma-derived NA cells and reduced pathogenicity in adult mice when inoculated intramuscularly, but not intracerebrally. However, this attenuation was not attributable to the induction of strong immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wunner WH (2007) Rabies virus. In: Jackson AC, Wunner WH (eds) Rabies, 2nd edn. Academic Press, San Diego, pp 23–68

    Chapter  Google Scholar 

  2. Wiktor TJ, Gyorgy E, Schlumberger D, Sokol F, Koprowski H (1973) Antigenic properties of rabies virus components. J Immunol 110(1):269–276

    CAS  PubMed  Google Scholar 

  3. Dietzschold B, Wiktor TJ, Trojanowski JQ, Macfarlan RI, Wunner WH, Torres-Anjel MJ, Koprowski H (1985) Differences in cell-to-cell spread of pathogenic and apathogenic rabies virus in vivo and in vitro. J Virol 56(1):12–18

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Dietzschold B, Wunner WH, Wiktor TJ, Lopes AD, Lafon M, Smith CL, Koprowski H (1983) Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci USA 80(1):70–74

    Article  CAS  PubMed  Google Scholar 

  5. Etessami R, Conzelmann KK, Fadai-Ghotbi B, Natelson B, Tsiang H, Ceccaldi PE (2000) Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81(9):2147–2153

    CAS  PubMed  Google Scholar 

  6. Ito N, Takayama M, Yamada K, Sugiyama M, Minamoto N (2001) Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. J Virol 75(19):9121–9128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Morimoto K, Foley HD, McGettigan JP, Schnell MJ, Dietzschold B (2000) Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. J Neurovirol 6(5):373–381

    Article  CAS  PubMed  Google Scholar 

  8. Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B (1999) Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73(1):510–518

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Seif I, Coulon P, Rollin PE, Flamand A (1985) Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. J Virol 53(3):926–934

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Tuffereau C, Leblois H, Benejean J, Coulon P, Lafay F, Flamand A (1989) Arginine or lysine in position 333 of ERA and CVS glycoprotein is necessary for rabies virulence in adult mice. Virology 172(1):206–212

    Article  CAS  PubMed  Google Scholar 

  11. Takayama-Ito M, Inoue K, Shoji Y, Inoue S, Iijima T, Sakai T, Kurane I, Morimoto K (2006) A highly attenuated rabies virus HEP-Flury strain reverts to virulent by single amino acid substitution to arginine at position 333 in glycoprotein. Virus Res 119(2):208–215

    Article  CAS  PubMed  Google Scholar 

  12. Takayama-Ito M, Ito N, Yamada K, Sugiyama M, Minamoto N (2006) Multiple amino acids in the glycoprotein of rabies virus are responsible for pathogenicity in adult mice. Virus Res 115(2):169–175

    Article  CAS  PubMed  Google Scholar 

  13. Takayama-Ito M, Ito N, Yamada K, Minamoto N, Sugiyama M (2004) Region at amino acids 164 to 303 of the rabies virus glycoprotein plays an important role in pathogenicity for adult mice. J Neurovirol 10(2):131–135

    Article  CAS  PubMed  Google Scholar 

  14. Yamada K, Park CH, Noguchi K, Kojima D, Kubo T, Komiya N, Matsumoto T, Mitui MT, Ahmed K, Morimoto K, Inoue S, Nishizono A (2012) Serial passage of a street rabies virus in mouse neuroblastoma cells resulted in attenuation: potential role of the additional N-glycosylation of a viral glycoprotein in the reduced pathogenicity of street rabies virus. Virus Res 165(1):34–45

    Article  CAS  PubMed  Google Scholar 

  15. Yamada K, Noguchi K, Nonaka D, Morita M, Yasuda A, Kawazato H, Nishizono A (2013) Addition of a single N-glycan to street rabies virus glycoprotein enhances virus production. J Gen Virol 94(2):270–275

    Article  CAS  PubMed  Google Scholar 

  16. Ito N, Takayama-Ito M, Yamada K, Hosokawa J, Sugiyama M, Minamoto N (2003) Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol Immunol 47(8):613–617

    Article  CAS  PubMed  Google Scholar 

  17. Mifune K, Makino Y, Mannen K (1979) Susceptibility of various cell lines to rabies virus. Japan J Trop Med Hyg 7(3):201–208

    Article  Google Scholar 

  18. Luo TR, Minamoto N, Ito H, Goto H, Hiraga S, Ito N, Sugiyama M, Kinjo T (1997) A virus-neutralizing epitope on the glycoprotein of rabies virus that contains Trp251 is a linear epitope. Virus Res 51(1):35–41

    Article  CAS  PubMed  Google Scholar 

  19. Hiramatsu K, Mifune K, Mannen K, Nishizono A, Kawano H, Ito Y, Kawai A (1992) Mapping of the antigenic determinants recognized by monoclonal antibodies against the M2 protein of rabies virus. Virology 187(2):472–479

    Article  CAS  PubMed  Google Scholar 

  20. Smith JS, Yager PA, Baer GM (1973) A rapid reproducible test for determining rabies neutralizing antibody. Bull World Health Organ 48(5):535–541

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Shiota S, Mannen K, Matsumoto T, Yamada K, Yasui T, Takayama K, Kobayashi Y, Khawplod P, Gotoh K, Ahmed K, Iha H, Nishizono A (2009) Development and evaluation of a rapid neutralizing antibody test for rabies. J Virol Methods 161(1):58–62

    Article  CAS  PubMed  Google Scholar 

  22. Phares TW, Kean RB, Mikheeva T, Hooper DC (2006) Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. J Immunol 176(12):7666–7675

    CAS  PubMed  Google Scholar 

  23. Kuang Y, Lackay SN, Zhao L, Fu ZF (2009) Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res 144(1–2):18–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hooper DC, Phares TW, Fabis MJ, Roy A (2009) The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Negl Trop Dis 3(10):e535

    Article  PubMed Central  PubMed  Google Scholar 

  25. Roy A, Hooper DC (2008) Immune evasion by rabies viruses through the maintenance of blood-brain barrier integrity. J Neurovirol 14(5):401–411

    Article  CAS  PubMed  Google Scholar 

  26. Fabis MJ, Phares TW, Kean RB, Koprowski H, Hooper DC (2008) Blood-brain barrier changes and cell invasion differ between therapeutic immune clearance of neurotrophic virus and CNS autoimmunity. Proc Natl Acad Sci USA 105(40):15511–15516

    Article  CAS  PubMed  Google Scholar 

  27. Roy A, Phares TW, Koprowski H, Hooper DC (2007) Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. J Virol 81(3):1110–1118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Roy A, Hooper DC (2007) Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. J Virol 81(15):7993–7998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Phares TW, Fabis MJ, Brimer CM, Kean RB, Hooper DC (2007) A peroxynitrite-dependent pathway is responsible for blood-brain barrier permeability changes during a central nervous system inflammatory response: TNF-alpha is neither necessary nor sufficient. J Immunol 178(11):7334–7343

    CAS  PubMed  Google Scholar 

  30. Faber M, Faber ML, Papaneri A, Bette M, Weihe E, Dietzschold B, Schnell MJ (2005) A single amino acid change in rabies virus glycoprotein increases virus spread and enhances virus pathogenicity. J Virol 79(22):14141–14148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Liu Y, Zhang S, Zhang F, Hu R (2012) Adaptation of a Chinese ferret badger strain of rabies virus to high-titered growth in BHK-21 cells for canine vaccine development. Arch Virol 157(12):2397–2403

    Article  CAS  PubMed  Google Scholar 

  32. Prehaud C, Coulon P, LaFay F, Thiers C, Flamand A (1988) Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. J Virol 62(1):1–7

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Tao L, Ge J, Wang X, Zhai H, Hua T, Zhao B, Kong D, Yang C, Chen H, Bu Z (2010) Molecular basis of neurovirulence of flury rabies virus vaccine strains: importance of the polymerase and the glycoprotein R333Q mutation. J Virol 84(17):8926–8936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Faber M, Pulmanausahakul R, Nagao K, Prosniak M, Rice AB, Koprowski H, Schnell MJ, Dietzschold B (2004) Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc Natl Acad Sci USA 101(46):16328–16332

    Article  CAS  PubMed  Google Scholar 

  35. Wang ZW, Sarmento L, Wang Y, Li XQ, Dhingra V, Tseggai T, Jiang B, Fu ZF (2005) Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. J Virol 79(19):12554–12565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Prehaud C, Wolff N, Terrien E, Lafage M, Megret F, Babault N, Cordier F, Tan GS, Maitrepierre E, Menager P, Chopy D, Hoos S, England P, Delepierre M, Schnell MJ, Buc H, Lafon M (2010) Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Science Signal 3 (105):ra5

    Google Scholar 

  37. Mebatsion T, Weiland F, Conzelmann KK (1999) Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J Virol 73(1):242–250

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Nakahara K, Ohnuma H, Sugita S, Yasuoka K, Nakahara T, Tochikura TS, Kawai A (1999) Intracellular behavior of rabies virus matrix protein (M) is determined by the viral glycoprotein (G). Microbiol Immunol 43(3):259–270

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Makoto Sugiyama and Naoto Ito (Gifu University, Japan) for providing the recovery system for RC-HLΔG/GFP (pRC-HLΔG/GFP, pCI-RG, pT7IRES-RN, pT7IRES-RP, pT7IRES-RL and BHK/T7-9 cells) and the anti-G MAb 15-13. This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (grant number: 21780278) and the Ministry of Health, Labour and Welfare of Japan (Health and Labour Sciences Research Grants, Research on International Cooperation in Medical Science).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Noguchi, K. & Nishizono, A. Characterization of street rabies virus variants with an additional N-glycan at position 247 in the glycoprotein. Arch Virol 159, 207–216 (2014). https://doi.org/10.1007/s00705-013-1805-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1805-5

Keywords

Navigation