Skip to main content

Advertisement

Log in

Current and future therapies for hepatitis C virus infection: from viral proteins to host targets

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

An Erratum to this article was published on 17 April 2014

Abstract

Hepatitis C virus (HCV) infection is the most important problem across the world. It causes acute and chronic liver infection. Different approaches are in use to inhibit HCV infection, including small organic compounds, siRNA, shRNA and peptide inhibitors. This review article summarizes the current and future therapies for HCV infection. PubMed and Google Scholar were searched for articles published in English to give an insight into the current inhibitors against this life-threatening virus. HCV NS3/4A protease inhibitors and nucleoside/nucleotide inhibitors of NS5B polymerase are presently in the most progressive stage of clinical development, but they are linked with the development of resistance and viral breakthrough. Boceprevir and telaprevir are the two most important protease inhibitors that have been approved recently for the treatment of HCV infection. These two drugs are now the part of standard-of-care treatment (SOC). There are also many other drugs in phase III of clinical development. When exploring the various host-cell-targeting compounds, the most hopeful results have been demonstrated by cyclophilin inhibitors. The current SOC treatment of HCV infection is Peg-interferon, ribavirin and protease inhibitors (boceprevir or telaprevir). The future treatment of this life-threatening disease must involve combinations of therapies hitting multiple targets of HCV and host factors. It is strongly expected that the near future, treatment of HCV infection will be a combination of direct-acting agents (DAA) without the involvement of interferon to eliminate its side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wands JR (2004) Prevention of hepatocellular carcinoma. N Engl J Med 351:1567–1570

    CAS  PubMed  Google Scholar 

  2. Global Burden of Hepatitis C Working Group (2004) Global burden of disease (GBD) for hepatitis C. J Clin Pharmacol 44:20–29

    Google Scholar 

  3. Miller RH, Purcell RH (1990) Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proc Natl Acad Sci USA 87:2057–2061

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Tellinghuisen TL, Evans MJ, von Hahn T, You S, Rice CM (2007) Studying hepatitis C virus: making the best of a bad virus. J Virol 8:8853–8867

    Google Scholar 

  5. Sharma SD (2010) Hepatitis C virus: molecular biology & current therapeutic options. Indian J Med Res 131:17–34

    CAS  PubMed  Google Scholar 

  6. Kieffer TL, Sarrazin C, Miller JS, Welker MW, Forestier N, Reesink HW, Kwong AD, Zeuzem S (2007) Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology 46:631–639

    CAS  PubMed  Google Scholar 

  7. Zeuzem S, Hultcrantz R, Bourliere M et al (2004) Peginterferon alfa-2b plus ribavirin for treatment of chronic hepatitis C in previously untreated patients infected with HCV genotypes 2 or 3. J Hepatol 40:993–999

    CAS  PubMed  Google Scholar 

  8. Farnik H, Lange CM, Sarrazin C et al (2010) Meta-analysis shows extended therapy improves response of patients with chronic hepatitis C virus genotype 1 infection. Clin Gastroenterol Hepatol 8:884–890

    PubMed  Google Scholar 

  9. Sarrazin C, Zeuzem S (2010) Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology 138:447–462

    CAS  PubMed  Google Scholar 

  10. Cristofari G, Ivanyi-Nagy R, Gabus C et al (2004) The hepatitis C virus Core protein is a potent nucleic acid chaperone that directs dimerization of the viral (+) strand RNA in vitro. Nucleic Acids Res 32:2623–2631

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Ivanyi-Nagy R, Kanevsky I, Gabus C, Lavergne JP, Ficheux D, Penin F, Fosse P, Darlix JL (2006) Analysis of hepatitis C virus RNA dimerization and core-RNA interactions. Nucleic Acids Res 34:2618–2633

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Kopp M, Murray CL, Jones CT, Rice CM (2010) Genetic analysis of the carboxy-terminal region of the Hepatitis C virus core protein. J Virol 84:1666–1673

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Okamoto K, Mori Y, Komoda Y et al (2008) Intramembrane processing by signal peptide peptidase regulates the membrane localization of hepatitis C virus core protein and viral propagation. J Virol 82:8349–8361

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hüssy P, Langen H, Mous J, Jacobsen H (1996) Hepatitis C virus core protein: carboxy-terminal boundaries of two processed species suggest cleavage by a signal peptide peptidase. Virology 224:93–104

    PubMed  Google Scholar 

  15. Cristina J, Moreno-del PM, Moratorio G (2007) Hepatitis C virus genetic variability in patients undergoing antiviral therapy. Virus Res 127:185–194

    CAS  PubMed  Google Scholar 

  16. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–1009

    CAS  PubMed  Google Scholar 

  17. Kota S, Scampavia L, Spicer T, Beeler AB, Takahashi V, Snyder JK, Porco JA Jr, Hodder P, Strosberg AD (2010) A homogeneous time resolved fluorescence assay for identifying inhibitors of Hepatitis C virus dimerization. Assay Drug Dev Technol 8:96–105

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Strosberg AD, Kota S, Takahashi V, Snyder JK, Mousseau G (2010) Core as a novel viral target for hepatitis C drugs. Viruses 2:1734–1751

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    CAS  PubMed  Google Scholar 

  20. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    CAS  PubMed  Google Scholar 

  21. Khaliq S, Jahan S, Ijaz B, Ahmad W, Asad S, Pervaiz A, Samreen B, Khan M, Hassan S (2010) Inhibition of core gene of HCV 3a genotype using synthetic and vector derived siRNAs. Virol J 7:318

    PubMed Central  PubMed  Google Scholar 

  22. Liu M, Ding H, Zhao P, Qin ZL, Gao J, Cao MM, Luan J, Wu WB, Qi ZT (2006) RNA interference effectively inhibits mRNA accumulation and protein expression of hepatitis C virus core and E2 genes in human cells. Biosci Biotechnol Biochem 70:2049–2055

    CAS  PubMed  Google Scholar 

  23. Bartosch B, Dubuisson J (2010) Recent advances in Hepatitis C virus cell entry. Viruses 2:692–709

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, Rouillé Y (2006) Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80:6964–6972

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 8:519–533

    Google Scholar 

  26. Nance CL, Siwak EB, Shearer WT (2009) Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J Allergy Clin Immunol 123:459–465

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Calland N, Albecka A, Belouzard S et al (2012) Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55:720–729

    CAS  PubMed  Google Scholar 

  28. Hsu M, Zhang J, Flint M, Logvinoff C, Cheng MC, Rice CM, McKeating A (2003) Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. PNAS 100:7271–7276

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Baldick CJ, Wichroski MJ, Pendri A et al (2010) A novel small molecule inhibitor of hepatitis C virus entry. PLoS Pathog 6:e1001086

    PubMed Central  PubMed  Google Scholar 

  30. Liua R, Tewari M, Konga R et al (2010) A peptide derived from hepatitis C virus E2 envelope protein inhibits post-binding step in HCV entry. Antiviral Res 86:172–179

    Google Scholar 

  31. Montserret R, Saint N, Vanbelle C et al (2010) NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J Biol Chem 285:31446–31461

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Chew CF, Vijayan R, Chang J, Zitzmann N, Biggin PC (2009) Determination of pore-lining residues in the hepatitis C virus p7 protein. Biophys J 96:L10–L12

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Mould JA, Drury JE, Frings SM, Kaupp UB, Pekosz A, Lamb RA, Pinto LH (2000) Permeation and activation of the M2 ion channel of influenza A virus. J Bio Chem 275:31038–31050

    CAS  Google Scholar 

  34. Ewart GD, Mills K, Cox GB, Gage PW (2002) Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur Biophys J 31:26–35

    CAS  PubMed  Google Scholar 

  35. Luscombe CA, Huang Z, Murray MG, Miller M, Wilkinson J, Ewart GD (2010) A novel Hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-alpha-2b and nucleoside analogues. Antivir Res 86:144–153

    CAS  PubMed  Google Scholar 

  36. Peterson JR, Ora A, Van PN, Helenius A (1995) Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 6:1173–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Durantel D, Branza-Nichita N, Carrouée-Durantel S, Butters TD, Dwek RA, Zitzmann N (2001) Study of the mechanism of antiviral action of iminosugar derivatives against bovine viral diarrhea virus. J Virol 75:8987–8998

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Pavlović D, Neville DC, Argaud O, Blumberg B, Dwek RA, Fischer WB, Zitzmann N (2003) The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci USA 100:6104-6108. Epub 2003 Apr 28

    Google Scholar 

  39. Erdtmann L, Franck N, Lerat H et al (2003) The hepatitis C virus NS2 protein is an inhibitor of CIDE-B-induced apoptosis. J Biol Chem 278:18256–18264

    CAS  PubMed  Google Scholar 

  40. Yang XJ, Liu J, Ye L, Liao QJ et al (2006) HCV NS2 protein inhibits cell proliferation and induces cell cycle arrest in the S-phase in mammalian cells through down-regulation of cyclin A expression. Virus Res 121:134–143

    CAS  PubMed  Google Scholar 

  41. Kim KM, Kwon SN, Kang JI, Lee SH, Jang SK, Ahn BY, Kim YK (2007) Hepatitis C virus NS2 protein activates cellular cyclic AMP-dependent pathways. Biochem Biophys Res Commun 356:948–954

    CAS  PubMed  Google Scholar 

  42. Oem JK, Jackel CC, Li YP, Kang HN, Zhou Y, Babiuk LA, Liu Q (2008) Hepatitis C virus non-structural protein-2 activates CXCL-8 transcription through NF-kappaB. Arch Virol 153:293–301

    CAS  PubMed  Google Scholar 

  43. Oem JK, Jackel CC, Li YP, Zhou Y, Zhong J, Shimano H, Babiuk LA, Liu Q (2008) Activation of sterol regulatory element-binding protein 1c and fatty acid synthase transcription by hepatitis C virus non-structural protein 2. J Gen Virol 89:1225–1230

    CAS  PubMed  Google Scholar 

  44. Lorenz IC (2010) The Hepatitis C virus nonstructural protein 2 (NS2): an up-and-coming antiviral drug target. Viruses 2:1635–1646

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Thibeault D, Maurice R, Pilote L, Lamarre D, Pause A (2001) In vitro characterization of a purified NS2/3 protease variant of hepatitis C virus. J Biol Chem 276:46678–46684

    CAS  PubMed  Google Scholar 

  46. Kim JL, Morgenstern KA, Lin C, Fox T et al (1996) Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355

    CAS  PubMed  Google Scholar 

  47. Wyles DL (2010) Moving beyond interferon alfa: investigational drugs for hepatitis C virus infection. Top HIV Med 18:132–136

    PubMed  Google Scholar 

  48. Belon CA, High YD, Lin TI, Pauwels F, Frick DN (2010) Mechanism and specificity of a symmetrical benzimidazolephenylcarboxamide helicase inhibitor. Biochemistry 49:1822–1832

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Rehman S, Ashfaq UA, Javed T (2011) Antiviral drugs against hepatitis C virus. Genet Vaccines Ther 9:11

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Forestier N, Larrey D, Guyader D, Marcellin P, Rouzier R, Patat A, Smith P, Bradford W, Porter S, Blatt L, Seiwert SD, Zeuzem S (2011) Treatment of chronic hepatitis C patients with the NS3/4A protease inhibitor danoprevir (ITMN-191/RG7227) leads to robust reductions in viral RNA: a phase 1b multiple ascending dose study. Hepatol 54:1130–1136

    CAS  Google Scholar 

  51. Thomson JA, Perni RB (2006) Hepatitis C virus NS3/4A protease inhibitors: countering viral subversion in vitro and showing promise in the clinic. Curr Opin Drug Discov Dev 9:606–617

    CAS  Google Scholar 

  52. Tsantrizos YS (2009) TMC-435, an NS3/4A protease inhibitor for the treatment of HCV infection. Curr Opin Investig Drugs 10:871–881

    CAS  PubMed  Google Scholar 

  53. Manns M, Reesink H, Berg T, Dusheiko G, Flisiak R, Marcellin P, Moreno C, Lenz O, Meyvisch P, Peeters M, Sekar V, Simmen K, Verloes R (2011) Rapid viral response of once-daily TMC435 plus pegylated interferon/ribavirin in hepatitis C genotype-1 patients: a randomized trial. Antivir Ther 16:1021–1033

    CAS  PubMed  Google Scholar 

  54. Llinàs-Brunet M, Bailey MD, Goudreau N, Bhardwaj PK, Bordeleau J, Bös M, Bousquet Y, Cordingley MG, Duan J, Forgione P, Garneau M, Ghiro E, Gorys V, Goulet S, Halmos T, Kawai SH, Naud J, Poupart MA, White PW (2010) Discovery of a potent and selective noncovalent linear inhibitor of the hepatitis C virus NS3 protease (BI 201335). J Med Chem 53:6466–6476

    PubMed  Google Scholar 

  55. Duan J, Yong CL, Garneau M, Amad M, Bolger G, De Marte J, Montpetit H, Otis F, Jutras M, Rhéaume M, White PW, Llinàs-Brunet M, Bethell RC, Cordingley MG (2012) Cross-species absorption, metabolism, distribution and pharmacokinetics of BI 201335, a potent HCV genotype 1 NS3/4A protease inhibitor. Xenobiotica 42:164–172

    CAS  PubMed  Google Scholar 

  56. Zeuzem S, Asselah T, Angus P, Zarski JP, Larrey D, Müllhaupt B, Gane E, Schuchmann M, Lohse A, Pol S, Bronowicki JP, Roberts S, Arasteh K, Zoulim F, Heim M, Stern JO, Kukolj G, Nehmiz G, Haefner C, Boecher WO (2011) Efficacy of the protease inhibitor BI 201335, polymerase inhibitor BI 207127, and ribavirin in patients with chronic HCV infection. Gastroenterology 14:2047–2055

    Google Scholar 

  57. Choi J, Ou JHJ (2006) Mechanisms of liver injury III. Oxidative stress in the pathogenesis of hepatitis C virus. American Journal of Physiology-Gastrointestinal and Liver. Physiology 290:G847–G851

    CAS  Google Scholar 

  58. Zhu ZW, Wilson AT, Mathahs MM et al (2008) Heme Oxygenase-1 Suppresses Hepatitis C Virus Replication and Increases Resistance of Hepatocytes to Oxidant Injury. Hepatology 48:1430–1439

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Ryter SW, Morse D, Choi AMK (2007) Carbon monoxide and bilirubin-Potential therapies for pulmonary/vascular injury and disease. Am J Resp Cell Mol Biol 36:175–182

    CAS  Google Scholar 

  60. Fillebeen C, Rivas-Estilla AM, Bisaillon M et al (2005) Iron inactivates the RNA polymerase NS5B and suppresses subgenomic replication of hepatitis C virus. J Biol Chem 280:9049–9057

    CAS  PubMed  Google Scholar 

  61. Lehmann E, EL-Tantawy WH, Ocker M et al (2010) The Heme Oxygenase 1 product biliverdin interferes with Hepatitis C virus replication by increasing antiviral interferon response. Hepatology 51:398–404

    CAS  PubMed  Google Scholar 

  62. Zhu Z, Wilson AT, Luxon BA, Brown KE, Mathahs MM, Bandyopadhyay S, McCaffrey AP, Schmidt WN (2010) Biliverdin inhibits hepatitis C virus nonstructural 3/4A protease activity: mechanism for the antiviral effects of heme oxygenase? Hepatology 52:1897–1905

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Rajagopalan R, Misialek S, Stevens S, Myszka D, Brandhuber B, Ballard J et al (2009) Inhibition and binding kinetics of the hepatitis C virus NS3 protease inhibitor ITMN-191 reveals tight binding and slow dissociative behavior. Biochemistry 48:2559–2568

    CAS  PubMed  Google Scholar 

  64. Bradford WZ, Rubino C, Porter S, Forrest A, Blatt LM, Patat A (2008) A phase 1 study of the safety, tolerability, and pharmacokinetics of single ascending oral doses of the NS3/4A protease inhibitor ITMN-191 in healthy subjects. Hepatology 48:1146A

    Google Scholar 

  65. Gane EJ, Roberts SK, Stedman C et al (2009) First-in-man demonstration of potent antiviral activity with a nucleoside polymerase (R7128) and protease (R7227/ITMN-191) inhibitor combination in HCV: safety, pharmacokinetics, and virologic results from INFORM-1. J Hepatol 50:S380

    Google Scholar 

  66. Liverton NJ, Carroll SS, Dimuzio J, Fandozzi C, Graham DJ, Hazuda D, Holloway MK, Ludmerer SW, McCauley JA, McIntyre CJ, Olsen DB, Rudd MT, Stahlhut M, Vacca JP (2010) MK-7009, a potent and selective inhibitor of hepatitis C virus NS3/4A protease. Antimicrob Agents Chemother 54:305–311

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Manns MP, Gane E, Rodriguez-Torres M, Stoehr A, Yeh CT, Marcellin P, Wiedmann RT, Hwang PM, Caro L, Barnard RJ, Lee AW (2012) MK-7009 Protocol 007 Study Group. Vaniprevir with pegylated interferon alpha-2a and ribavirin in treatment-naïve patients with chronic hepatitis C: a randomized phase II study. Hepatology 56:884–893

    CAS  PubMed  Google Scholar 

  68. Sarrazin C, Zeuzem S (2010) Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology 138:447–462

    CAS  PubMed  Google Scholar 

  69. Mederacke I, Wedemeyer H, Manns MP (2009) Boceprevir, an NS3 serine protease inhibitor of hepatitis C virus, for the treatment of HCV infection. Curr Opin Investig Drugs 10:181–189

    CAS  PubMed  Google Scholar 

  70. Malcolm BA, Liu R, Lahser F, Agrawal S, Belanger B et al (2006) SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of alpha interferon in replicon cells. Antimicrob Agents Chemother 50:1013–1020

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, Sulkowski MS, Jacobson IM, Reddy KR, Goodman ZD, Boparai N, DiNubile MJ, Sniukiene V, Brass CA, Albrecht JK, Bronowicki JP, SPRINT-2 Investigators (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364:1195–1206

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Poordad F, McCone J Jr, Bacon BR, Bruno S, Manns MP, Sulkowski MS, Jacobson IM, Reddy KR, Goodman ZD, Boparai N, DiNubile MJ, Sniukiene V, Brass CA, Albrecht JK, Bronowicki JP, SPRINT-2 Investigators (2011) Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 364:1195–1206

    CAS  PubMed Central  PubMed  Google Scholar 

  73. McHutchison JG, Manns MP, Muir AJ, Terrault NA, Jacobson IM, Afdhal NH, Heathcote EJ, Zeuzem S, Reesink HW, Garg J, Bsharat M, George S, Kauffman RS, Adda N, Di Bisceglie AM, PROVE3 Study Team (2010) Telaprevir for previously treated chronic HCV infection. N Engl J Med 362:1292–1303

    CAS  PubMed  Google Scholar 

  74. Jacobson IM, McHutchison JG, Dusheiko G, Di Bisceglie AM, Reddy KR, Bzowej NH, Marcellin P, Muir AJ, Ferenci P, Flisiak R, George J, Rizzetto M, Shouval D, Sola R, Terg RA, Yoshida EM, Adda N, Bengtsson L, Sankoh AJ, Kieffer TL, George S, Kauffman RS, Zeuzem S, ADVANCE Study Team (2011) Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 364:2405–2416

    CAS  PubMed  Google Scholar 

  75. Sherman KE, Flamm SL, Afdhal NH, Nelson DR, Sulkowski MS, Everson GT, Fried MW, Adler M, Reesink HW, Martin M, Sankoh AJ, Adda N, Kauffman RS, George S, Wright CI, Poordad F, ILLUMINATE Study Team (2011) Response-guided telaprevir combination treatment for hepatitis C virus infection. N Engl J Med 365:1014–1024

    CAS  PubMed  Google Scholar 

  76. Chatel CL, Baril M, Lamarre D (2010) Hepatitis C virus NS3/4A protease inhibitors: a light at the end of the tunnel. Viruses 2:1752–1765

    Google Scholar 

  77. Zeuzem S, Andreone P, Pol S, Lawitz E, Diago M, Roberts S, Focaccia R, Younossi Z, Foster GR, Horban A, Ferenci P, Nevens F, Müllhaupt B, Pockros P, Terg R, Shouval D, van Hoek B, Weiland O, Van Heeswijk R, De Meyer S, Luo D, Boogaerts G, Polo R, Picchio G, Beumont M, REALIZE Study Team (2011) Telaprevir for retreatment of HCV infection. N Engl J Med 364:2417–2428

    CAS  PubMed  Google Scholar 

  78. Li K, Frankowski KJ, Belon CA, Neuenswander B, Ndjomou J, Hanson AM, Shanahan MA, Schoenen FJ, Blagg BS, Aubé J, Frick DN (2012) Optimization of potent Hepatitis C Virus NS3 helicase inhibitors isolated from the yellow dyes thioflavine S and primuline. J Med Chem 55:3319–3330

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Salam KA, Furuta A, Noda N, Tsuneda S, Sekiguchi Y, Yamashita A, Moriishi K, Nakakoshi M, Tsubuki M, Tani H, Tanaka J, Akimitsu N (2012) Inhibition of hepatitis C virus NS3 helicase by manoalide. J Nat Prod 75:650–654

    CAS  PubMed  Google Scholar 

  80. Wolk B, Sansonno D, Krausslich HG, Dammacco F, Rice CM, Blum HE, Moradpour D (2000) Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol 74:2293–2304

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Asabe SI, Tanji Y, Satoh S, Kaneko T, Kimura K, Shimotohno K (1997) The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. J Virol 71:790–796

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Huang M, Sun Y, Yang W et al (2007) ACH-806: a potent inhibitor of HCV replication with a novel mechanism of action. J Hepatol 46:S221

    Google Scholar 

  83. Gouttenoire J, Penin F, Moradpour D (2010) Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory. Rev Med Virol 20:117–129

    CAS  PubMed  Google Scholar 

  84. Einav S, Gerber D, Bryson P, Sklan E, Elazar M, Glenn JS, Quake S (2008) Inhibitors of a new hepatitis C target discovered bymicrofluidic affinity analysis. Nat Biotechnol 26:1019–1027

    CAS  PubMed  Google Scholar 

  85. Einav S, Dvory SH, Gehrig EG (2010) The Hepatitis C virus (HCV) NS4B RNA binding inhibitor, clemizole, is highly synergistic with HCV protease inhibitors, submitted for publication. Antiviral Res 87:1–8

    PubMed Central  PubMed  Google Scholar 

  86. Bryson PD, Cho NJ, Einav S, Lee C, Tai V, Bechtel J, Sivaraja M, Roberts C, Schmitz U, Glenn JS (2010) A small molecule inhibits HCV replication and alters NS4B’s subcellular distribution. Antiviral Res 87:1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Lundin M, Lindström H, Grönwall C, Persson MA (2006) Dual topology of the processed hepatitis C virus protein NS4B is influenced by the NS5A protein. J Gen Virol 87:3263–3272

    CAS  PubMed  Google Scholar 

  88. Cho NJ, Dvory-Sobol H, Lee C, Cho SJ, Bryson P, Masek M, Elazar M, Frank CW, Glenn JS (2010) Identification of a class of HCV inhibitors directed against the nonstructural protein NS4B. Sci Transl Med 2:15ra6

    Google Scholar 

  89. Moradpour D, Kary P, Rice CM, Blum HE (1998) Continuous human cell lines inducibly expressing hepatitis C virus structural and nonstructural proteins. Hepatology 28:192–201

    CAS  PubMed  Google Scholar 

  90. Gao M, Nettles RE, Belema M, Snyder LB et al (2010) Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 465:96–100

    CAS  PubMed  Google Scholar 

  91. Elicker J (2011) BMS-790052 Plus Peginterferon Alfa and Ribavirin Demonstrated up to 83% Sustained Virologic Response 24 Weeks Post-Treatment (SVR24) in Phase II Study of Genotype 1 Hepatitis C Patients. Bristol-Myers Squibb. http://news.bms.com/press-release/rd-news/bms-790052-plus-peginterferon-alfa-and-ribavirin-demonstrated-83-sustained-vir, September 17, 2011

  92. Lemm JA, O’Boyle D, Liu M et al (2010) Identification of hepatitis C virus NS5A inhibitors. J Virol 84:482–491

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Lee C, Ma H, Hang JQ, Leveque V, Sklan EH, Elazar M, Klumpp K, Glenn JS (2011) The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein. Virology 414:10–18

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Obrein P (2013) Gilead Announces Update on Phase 3 Study of Oral Fixed-Dose Combination of Sofosbuvir and Ledipasvir for Genotype 1 Hepatitis C Patient. Gilead Sciences, Inc. http://investors.gilead.com/phoenix.zhtml?c=69964&p=irol-newsArticle&id=1800517. Accessed 26 Mar 2013

  95. Spreen W, Wilfret D, Bechtel J, Adkison K, Lou Y, Jones L, Willsie S, Glass S, Roberts C (2011) GSK2336805 HCV NS5A Inhibitor Demonstrates Potent Antiviral Activity in Chronic Hepatitis C (CHC) Genotype 1 Infection: Results from a First Time in Human (FTIH) Single and Repeat Dose Study. 62th Annual Meeting of the American Association for the Study of liver diseases. http://www.natap.org/2011/AASLD/AASLD_30.htm. Accessed 5–9 Nov 2011

  96. Kevin G (2013) Boehringer signs hep C pact with Presidio. World News. http://www.pharmatimes.com/article/13-03-4/Boehringer_signs_hep_C_pact_with_Presidio.aspx. Accessed 5–9 Nov 2011

  97. Gane EJ, Roberts SK, Stedman CA et al (2009) Combination therapy with a nucleoside polymerase (R7128) and protease (R7227/ITMN-191) Inhibitor in HCV: Safety, pharmacokinetics, and virologic results from INFORM-1. Hepatology 50:394A–395A

    Google Scholar 

  98. Miller RH, Purcell RH (1990) Hepatitis C virus shares amino acid sequence similarity with pestiviruses and flaviviruses as well as members of two plant virus supergroups. Proc Natl Acad Sci USA 87:2057–2061

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Doublié S, Tabor S, Long AM, Richardson CC, Ellenberger T (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391:251–258

    PubMed  Google Scholar 

  100. Kolykhalov AA, Mihalik K, Feinstone SM, Rice CM (2000) Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J Virol 74:2046–2051

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Heck JA, Lam AM, Narayanan N, Frick DN (2008) Effects of mutagenic and chain-terminating nucleotide analogs on enzymes isolated from hepatitis C virus strains of various genotypes. Antimicrob Agents Chemother 52:1901–1911

    CAS  PubMed Central  PubMed  Google Scholar 

  102. McCown MF, Rajyaguru S, Pogam SL et al (2008) The hepatitis C virus replicon presents a higher barrier to resistance to nucleoside analogs than to non-nucleoside polymerase or protease inhibitors. Antimicrob Agents Chemother 52:1604–1612

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Ali S, Leveque V, Le Pogam S et al (2008) Selected replicon variants with low-level in vitro resistance to the hepatitis C virus NS5B polymerase inhibitor PSI-6130 lack cross-resistance with R1479. Antimicrob Agents Chemother 52:4356–4369

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Erhardt A, Deterding K, Benhamou Y, Reiser M, Forns X et al (2009) Safety, pharmacokinetics and antiviral effect of BILB 1941, a novel hepatitis C virus RNA polymerase inhibitor, after 5 days oral treatment. Antivir Ther 14:23–32

    CAS  PubMed  Google Scholar 

  105. Lam AM, Murakami E, Espiritu C, Steuer HM, Niu C, Keilman M et al (2010) PSI-7851, a pronucleotide of beta-D-2’-deoxy-2’-fluoro-2’-C-methyluridine monophosphate, is a potent and pan-genotype inhibitor of hepatitis C virus replication. Antimicrob Agents Chemother 54:3187–3196

    CAS  PubMed Central  PubMed  Google Scholar 

  106. McGuigan C, Madela K, Aljarah M, Gilles A, Brancale A et al (2010) Design, synthesis and evaluation of a novel double pro-drug: INX-08189. A new clinical candidate for hepatitis C virus. Bioorg Med Chem Lett 20:4850–4854

    CAS  PubMed  Google Scholar 

  107. Vernachio JH, Bleiman B, Bryant KD et al (2011) INX-08189, a phosphoramidate prodrug of 6-O-methyl-2’-C-methyl guanosine, is a potent inhibitor of hepatitis C virus replication with excellent pharmacokinetic and pharmacodynamic properties. Antimicrob Agents Chemother 55:1843–1851

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Peepo L (2012) Abbott Presents Positive Results from Phase 2 “Pilot” Study of an interferon-free combination regimen for the treatment of Hepatitis C http://www.abbott.com/news-media/press-releases/abbott-presents-positive-results-from-phase-2-pilot-study-of-an-interferonfree-combination-regime.htm. Accessed 19 Apr 2012

  109. Kong L, Li S, Han X, Xiang Z, Fang X, Li B, Wang W, Zhong H, Gao J, Ye L (2007) Inhibition of HCV RNA-dependent RNA polymerase activity by aqueous extract from Fructus Ligustri Lucidi. Virus Res 128:9–17

    CAS  PubMed  Google Scholar 

  110. Kong L, Li S, Liao Q, Zhang Y, Sun R, Zhu X, Zhang Q, Wang J, Wu X, Fang X, Zhu Y (2013) Oleanolic acid and ursolic acid: Novel hepatitis C virus antivirals that inhibit NS5B activity. Antiviral Res 98:44–53

    CAS  PubMed  Google Scholar 

  111. Jilg N, Chung RT (2012) Adding to the toolbox: Receptor tyrosine kinases as potential targets in the treatment of hepatitis C. J Hepatol 56:282–284

    PubMed  Google Scholar 

  112. Shinohara Y, Imajo K, Yoneda M, Tomeno W, Ogawa Y, Kirikoshi H, Funakoshi K, Ikeda M, Kato N, Nakajima A, Saito S (2013) Unfolded protein response pathways regulate Hepatitis C virus replication via modulation of autophagy. Biochem Biophys Res Commun 432:326–332

    CAS  PubMed  Google Scholar 

  113. Rosnoblet C, Fritzinger B, Legrand D, Launay H, Wieruszeski JM, Lippens G, Hanoulle X (2012) Hepatitis C virus NS5B and host cyclophilin A share a common binding site on NS5A. J Biol Chem 287:44249–44260

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Chatterji U, Lim P, Bobardt MD et al (2010) HCV resistance to cyclosporin A does not correlate with a resistance of the NS5A cyclophilin A interaction to cyclophilin inhibitors. J Hepatol 53:50–56

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Ma S, Boerner JE, TiongYip C et al (2006) NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with alpha interferon. Antimicrob Agents Chemother 50:2976–2982

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Hopkins S, Scorneaux B, Huang Z et al (2010) SCY-635: A Novel Non-Immunosuppressive Analog of Cyclosporin A that Exhibits Potent Inhibition of Hepatitis C Virus RNA Replication in vitro. Antimicrob Agents Chemother 54:660–672

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Landrieu I, Hanoulle X, Bonachera F et al (2010) Structural basis for the non-immunosuppressive character of the Cyclosporin A analog Debio 025. Biochemistry 49:4679–4686

    CAS  PubMed  Google Scholar 

  118. Flisiak R, Feinman SV, Jablkowski M et al (2009) The cyclophilin inhibitor Debio 025 combined with PEG IFNalpha2a significantly reduces viral load in treatment-naive hepatitis C patients. Hepatology 49:1460–1468

    CAS  PubMed  Google Scholar 

  119. Pianko S, Zeuzem S, Chuang WL, Foster GR, Sarin SK, Flisiak R, Lee CM, Andreone P, Piratvisuth T, Shah S, Sood A, George J, Gould M, Komolmit P (2012) Randomized trial of albinterferon alfa-2b every 4 weeks for chronic hepatitis C virus genotype 2/3. J Viral Hepat 19:623–634

    CAS  PubMed  Google Scholar 

  120. Elazar M, Liu M, McKenna SA et al (2009) The antihepatitis C agent nitazoxanide induces phosphorylation of eukaryotic initiation factor 2alpha via protein kinase activated by double-stranded RNA activation. Gastroenterology 137:1827–1835

    CAS  PubMed  Google Scholar 

  121. Rossignol JF, Kabil SM, El Gohary Y et al (2008) Clinical trial: randomized, double-blind, placebo-controlled study of nitazoxanide monotherapy for the treatment of patients with chronic hepatitis C genotype 4. Aliment Pharmacol Ther 28:574–580

    CAS  PubMed  Google Scholar 

  122. Mederacke I, Wedemeyer H (2009) Nitazoxanide for the treatment of chronic hepatitis C New opportunities but new challenges? Ann Hepatol 8:166–168

    PubMed  Google Scholar 

  123. Goldstein AL, Thymosins Badamchian M (2004) Chemistry and biological properties in health and disease. Expert Opin Biol Ther 4:559–573

    CAS  PubMed  Google Scholar 

  124. Ciancio A, Andreone P, Kaiser S, Mangia A, Milella M, Solà R, Pol S, Tsianos E, De Rosa A, Camerini R, McBeath R, Rizzetto M (2012) Thymosin alpha-1 with peginterferon alfa-2a/ribavirin for chronic hepatitis C not responsive to IFN/ribavirin: an adjuvant role? J Viral Hepat 19(Suppl 1):52–59

    PubMed  Google Scholar 

  125. Niepmann M (2009) Activation of hepatitis C virus translation by liver-specific microRNA. Cell Cycle 8:1473–1477

    CAS  PubMed  Google Scholar 

  126. Jangra RK, Yi M, Lemon SM (2010) Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 84:6615–6625

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Fluiter K, Mook OR, Baas F (2009) The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol Biol 487:189–203

    CAS  PubMed  Google Scholar 

  128. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Higher Education Commission of Pakistan and National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan, for providing financial support. We are highly thankful to Professor Lance D. Presser Ph.D. (College of Lake County Division of Biological and Health Sciences, 19351 West Washington Street, Grayslake, Illinois 60030) for his help in editing this manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sobia Manzoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imran, M., Manzoor, S., Khattak, N.M. et al. Current and future therapies for hepatitis C virus infection: from viral proteins to host targets. Arch Virol 159, 831–846 (2014). https://doi.org/10.1007/s00705-013-1803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1803-7

Keywords

Navigation