Skip to main content

Advertisement

Log in

MiR-199a-5p promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and eNOS

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human cytomegalovirus (HCMV) infection has been shown to contribute to vascular disease through the induction of angiogenesis. However, the role of microRNA in angiogenesis induced by HCMV infection remains unclear. The present study was thus designed to explore the potential effect of miR-199a-5p on angiogenesis and to investigate the underlying mechanism in endothelial cells. We found that HCMV infection of endothelial cells (ECs) enhanced expression of miR-199a-5p and reduced the SIRT1 protein level at 24 h postinfection (hpi). Transfection with miR-199a-5p mimics significantly suppressed SIRT1 protein expression and promoted cellular migration and tube formation induced by HCMV infection, which could be reversed by transfection with an miR-199a-5p inhibitor. Furthermore, pretreatment with resveratrol depressed motility and tube formation of HCMV-infected ECs, which could be reversed by SIRT1 siRNA. Finally, overexpression of miR-199a-5p decreased the level of eNOS modulated by SIRT1, an effect repressed by transfection with an miR-199a-5p inhibitor. In summary, HCMV infection of endothelial cells upregulates miR-199a-5p expression and enhances cell migration and tube formation through downregulation of SIRT1/eNOS by miR-199a-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Murray CJ, Lopez AD (1997) Global mortality, disability, and the contribution of risk factors: global burden of disease study. Lancet 349:1436–1442

    Article  PubMed  CAS  Google Scholar 

  2. Epstein SE, Zhou YF, Zhu J (1999) Infection and atherosclerosis: emerging mechanistic paradigms. Circulation 100:e20–e28

    Article  PubMed  CAS  Google Scholar 

  3. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143

    Article  PubMed  CAS  Google Scholar 

  4. Streblow DN, Orloff SL, Nelson JA (2001) Do pathogens accelerate atherosclerosis? J Nutr 131:2798S–2804S

    PubMed  CAS  Google Scholar 

  5. Streblow DN, Dumortier J, Moses AV, Orloff SL, Nelson JA (2008) Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol 325:397–415

    Article  PubMed  CAS  Google Scholar 

  6. Soderberg-Naucler C (2006) Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 259:219–246

    Article  PubMed  CAS  Google Scholar 

  7. Knoblach T, Grandel B, Seiler J, Nevels M, Paulus C (2011) Human cytomegalovirus IE1 protein elicits a type II interferon-like host cell response that depends on activated STAT1 but not interferon-gamma. PLoS Pathog 7:e1002016

    Article  PubMed  CAS  Google Scholar 

  8. Billingham ME (1992) Histopathology of graft coronary disease. J Heart Lung Transplant 11:S38–S44

    PubMed  CAS  Google Scholar 

  9. Hosenpud JD, Shipley GD, Wagner CR (1992) Cardiac allograft vasculopathy: current concepts, recent developments, and future directions. J Heart Lung Transplant 11:9–23

    PubMed  CAS  Google Scholar 

  10. Libby P, Salomon RN, Payne DD, Schoen FJ, Pober JS (1989) Functions of vascular wall cells related to development of transplantation-associated coronary arteriosclerosis. Transplant Proc. 21:3677–3684

    PubMed  CAS  Google Scholar 

  11. Khurana R, Simons M (2003) Insights from angiogenesis trials using fibroblast growth factor for advanced arteriosclerotic disease. Trends Cardiovasc Med 13:116–122

    Article  PubMed  CAS  Google Scholar 

  12. Shibata M, Suzuki H, Nakatani M, Koba S, Geshi E, Katagiri T, Takeyama Y (2001) The involvement of vascular endothelial growth factor and flt-1 in the process of neointimal proliferation in pig coronary arteries following stent implantation. Histochem Cell Biol 116:471–481

    Article  PubMed  CAS  Google Scholar 

  13. Dumortier J, Streblow DN, Moses AV, Jacobs JM, Kreklywich CN, Camp D, Smith RD, Orloff SL, Nelson JA (2008) Human cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. J Virol 82:6524–6535

    Article  PubMed  CAS  Google Scholar 

  14. Caposio P, Orloff SL, Streblow DN (2011) The role of cytomegalovirus in angiogenesis. Virus Res 157:204–211

    Article  PubMed  CAS  Google Scholar 

  15. Botto S, Streblow DN, DeFilippis V, White L, Kreklywich CN, Smith PP, Caposio P (2011) IL-6 in human cytomegalovirus secretome promotes angiogenesis and survival of endothelial cells through the stimulation of survivin. Blood 117:352–361

    Article  PubMed  CAS  Google Scholar 

  16. Bentz GL, Yurochko AD (2008) Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and beta1 and beta3 integrins. Proc Natl Acad Sci USA 105:5531–5536

    Article  PubMed  CAS  Google Scholar 

  17. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  PubMed  CAS  Google Scholar 

  18. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  PubMed  CAS  Google Scholar 

  19. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  PubMed  CAS  Google Scholar 

  20. Chan YC, Roy S, Huang Y, Khanna S, Sen CK (2012) The microRNA miR-199a-5p down-regulation switches on wound angiogenesis by derepressing the v-ets erythroblastosis virus E26 oncogene homolog 1-matrix metalloproteinase-1 pathway. J Biol Chem 287:41032–41043

    Article  PubMed  CAS  Google Scholar 

  21. Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, Abdellatif M (2009) Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 104:879–886

    Article  PubMed  CAS  Google Scholar 

  22. Potente M, Dimmeler S (2008) Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 7:2117–2122

    Article  PubMed  CAS  Google Scholar 

  23. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104:14855–14860

    Article  PubMed  CAS  Google Scholar 

  24. Isenberg JS, Ridnour LA, Perruccio EM, Espey MG, Wink DA, Roberts DD (2005) Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc Natl Acad Sci USA 102:13141–13146

    Article  PubMed  CAS  Google Scholar 

  25. Grahame-Clarke C, Chan NN, Andrew D, Ridgway GL, Betteridge DJ, Emery V, Colhoun HM, Vallance P (2003) Human cytomegalovirus seropositivity is associated with impaired vascular function. Circulation 108:678–683

    Article  PubMed  Google Scholar 

  26. Shen Q, Cicinnati VR, Zhang X, Iacob S, Weber F, Sotiropoulos GC, Radtke A, Lu M, Paul A, Gerken G, Beckebaum S (2010) Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer 9:227

    Article  PubMed  Google Scholar 

  27. Sakurai K, Furukawa C, Haraguchi T, Inada K, Shiogama K, Tagawa T, Fujita S, Ueno Y, Ogata A, Ito M, Tsutsumi Y, Iba H (2011) MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 71:1680–1689

    Article  PubMed  CAS  Google Scholar 

  28. Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM, Chan WY (2011) Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 30:3404–3415

    Article  PubMed  CAS  Google Scholar 

  29. Xu N, Zhang J, Shen C, Luo Y, Xia L, Xue F, Xia Q (2012) Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. Biochem Biophys Res Commun 423:826–831

    Article  PubMed  CAS  Google Scholar 

  30. Pencheva N, Tran H, Buss C, Huh D, Drobnjak M, Busam K, Tavazoie SF (2012) Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151:1068–1082

    Article  PubMed  CAS  Google Scholar 

  31. Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, Komuro I (2009) Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol 29:889–894

    Article  PubMed  CAS  Google Scholar 

  32. Stein S, Lohmann C, Schafer N, Hofmann J, Rohrer L, Besler C, Rothgiesser KM, Becher B, Hottiger MO, Boren J, McBurney MW, Landmesser U, Luscher TF, Matter CM (2010) SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J 31:2301–2309

    Article  PubMed  CAS  Google Scholar 

  33. Takemura A, Iijima K, Ota H, Son BK, Ito Y, Ogawa S, Eto M, Akishita M, Ouchi Y (2011) Sirtuin 1 retards hyperphosphatemia-induced calcification of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 31:2054–2062

    Article  PubMed  CAS  Google Scholar 

  34. Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, Wei YS, Cai H, Liu DP, Liang CC (2008) Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80:191–199

    Article  PubMed  CAS  Google Scholar 

  35. Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, Zeiher AM, Dimmeler S (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21:2644–2658

    Article  PubMed  CAS  Google Scholar 

  36. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isshiki K, Isono M, Uzu T, Guarente L, Kashiwagi A, Koya D (2007) SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem 282:151–158

    Article  PubMed  CAS  Google Scholar 

  37. Stein S, Matter CM (2011) Protective roles of SIRT1 in atherosclerosis. Cell Cycle 10:640–647

    Article  PubMed  CAS  Google Scholar 

  38. Csiszar A, Labinskyy N, Podlutsky A, Kaminski PM, Wolin MS, Zhang C, Mukhopadhyay P, Pacher P, Hu F, de Cabo R, Ballabh P, Ungvari Z (2008) Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations. Am J Physiol Heart Circ Physiol 294:H2721–H2735

    Article  PubMed  CAS  Google Scholar 

  39. Cheeran MC, Hu S, Yager SL, Gekker G, Peterson PK, Lokensgard JR (2001) Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J Neurovirol 7:135–147

    Article  PubMed  CAS  Google Scholar 

  40. Shen YH, Zhang L, Utama B, Wang J, Gan Y, Wang X, Wang J, Chen L, Vercellotti GM, Coselli JS, Mehta JL, Wang XL (2006) Human cytomegalovirus inhibits Akt-mediated eNOS activation through upregulating PTEN (phosphatase and tensin homolog deleted on chromosome 10). Cardiovasc Res 69:502–511

    Article  PubMed  CAS  Google Scholar 

  41. Ota H, Eto M, Ogawa S, Iijima K, Akishita M, Ouchi Y (2010) SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. J Atheroscler Thromb 17:431–435

    Article  PubMed  CAS  Google Scholar 

  42. Jia Y, Gao P, Chen H, Wan Y, Zhang R, Zhang Z, Yang R, Wang X, Xu J, Liu D (2013) SIRT1 suppresses PMA and ionomycin-induced ICAM-1 expression in endothelial cells. Sci China Life Sci 56:19–25

    Article  PubMed  CAS  Google Scholar 

  43. Caposio P, Musso T, Luganini A, Inoue H, Gariglio M, Landolfo S, Gribaudo G (2007) Targeting the NF-kappaB pathway through pharmacological inhibition of IKK2 prevents human cytomegalovirus replication and virus-induced inflammatory response in infected endothelial cells. Antiviral Res 73:175–184

    Article  PubMed  CAS  Google Scholar 

  44. Marinos RS, Zhang W, Wu G, Kelly KA, Meininger CJ (2001) Tetrahydrobiopterin levels regulate endothelial cell proliferation. Am J Physiol Heart Circ Physiol 281:H482–H489

    PubMed  CAS  Google Scholar 

  45. Valantine HA (2004) The role of viruses in cardiac allograft vasculopathy. Am J Transplant 4:169–177

    Article  PubMed  Google Scholar 

  46. Xia N, Strand S, Schlufter F, Siuda D, Reifenberg G, Kleinert H, Forstermann U, Li H (2013) Role of SIRT1 and FOXO factors in eNOS transcriptional activation by resveratrol. Nitric Oxide 32:29–35

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Department of Microbiology School of Medicine Shandong University for virus preparation.

This work was supported by Beijing Natural Science Foundation (nos. 7102040 and 7132060), National Natural Science Foundation of China (nos. 81041020, 81271311 and 81241039), Traditional Chinese Medicine, Beijing Technology Development Fund (no. SF-2007-III-22), Beijing Excellent Talent Foundation (NO. 20071-D0300100062), High-Level Technical Training Project Funding of Beijing Health System (2011-3-004) and Beijing City Staff to Go Abroad Preferential Funding Scheme.

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiawei Wang or Dexin Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Liu, L., Wang, R. et al. MiR-199a-5p promotes migration and tube formation of human cytomegalovirus-infected endothelial cells through downregulation of SIRT1 and eNOS. Arch Virol 158, 2443–2452 (2013). https://doi.org/10.1007/s00705-013-1744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1744-1

Keywords

Navigation