Skip to main content
Log in

Large-scale codon de-optimisation of the p29 replicase gene by synonymous substitutions causes a loss of infectivity of melon necrotic spot virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The effect of synonymous substitutions in the melon necrotic spot virus p29 replicase gene on viral pathogenicity was investigated. The codons in the p29 gene were replaced by the least frequently used synonymous codons in Arabidopsis thaliana or melons. Mechanical inoculation of melon with p29 variants resulted in a loss of viral infectivity when all, one-half, or one-quarter of the gene was de-optimised. The effect of the de-optimisation in one-sixth of the gene was different depending on the de-optimised region. These results demonstrate that large-scale codon bias de-optimisation without amino acid substitutions of the p29 gene alter viral infectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Adams MJ, Antoniw JF (2004) Codon usage bias amongst plant viruses. Arch Virol 149:113–135

    PubMed  CAS  Google Scholar 

  2. Avgelis A (1989) Watermelon necrosis caused by a strain of Melon necrotic spot virus. Plant Pathol 38:618–622

    Article  Google Scholar 

  3. Bos L, Van Dorst HJM, Huttinga H, Maat DZ (1984) Further characterization of melon necrotic spot virus causing severe disease in glasshouse cucumbers in the Netherlands and its control. Neth J Plant Pathol 90:55–69

    Article  Google Scholar 

  4. Campbell RN, Wipf-Scheibel C, Lecoq H (1996) Vector-assisted seed transmission of melon necrotic spot virus in melon. Phytopathology 86:1294–1298

    Article  Google Scholar 

  5. Cardinale DJ, Derosa K, Duffy S (2013) Base composition and translational selection are insufficient to explain codon usage bias in plant viruses. Viruses 15:162–181

    Article  Google Scholar 

  6. Cheng XF, Wu XY, Wang HZ, Sun YQ, Qian YS, Luo L (2012) High codon adaptation in citrus tristeza virus to its citrus host. Virol J 9:113

    Article  PubMed  CAS  Google Scholar 

  7. Cimino PA, Nicholson BL, Wu B, Xu W, White KA (2011) Multifaceted regulation of translational readthrough by RNA replication elements in a tombusvirus. PLoS Pathog 7:e1002423

    Article  PubMed  CAS  Google Scholar 

  8. Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, Boualem A, Hernandez-Gonzalez ME, Dolcet-Sanjuan R, Portnoy V, Mascarell-Creus A, Caño-Delgado AI, Katzir N, Bendahmane A, Giovannoni JJ, Aranda MA, Garcia-Mas J, Fei Z (2011) Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics 12:252

    Article  PubMed  CAS  Google Scholar 

  9. Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787

    Article  PubMed  CAS  Google Scholar 

  10. Furuki I (1981) Epidemiological studies on melon necrotic spot. Shizuoka (Japan) Agr Exp Sta Tech Bull 14

  11. Kido K, Tanaka C, Mochizuki T, Kubota K, Ohki T, Ohnishi J, Knight LM, Tsuda S (2008) High temperatures activate local viral multiplication and cell-to-cell movement of Melon necrotic spot virus but restrict expression of systemic symptoms. Phytopathology 98:181–186

    Article  PubMed  CAS  Google Scholar 

  12. Kishi K (1966) Necrotic spot of melon, a new virus disease. Ann Phytopathol Soc Jpn 32:138–144

    Article  Google Scholar 

  13. Kubota K, Tsuda S, Tamai A, Meshi T (2003) Tomato mosaic virus replication protein suppresses virus targeted posttranscriptional gene silencing. J Virol 77:11016–11026

    Article  PubMed  CAS  Google Scholar 

  14. Mochizuki T, Ohnishi J, Ohki T, Kanda A, Tsuda S (2008) Amino acid substitution in the coat protein of Melon necrotic spot virus causes loss of binding to the surface of Olpidium bornovanus zoospores. J Gen Plant Pathol 74:176–181

    Article  CAS  Google Scholar 

  15. Mochizuki T, Hirai K, Kanda A, Ohnishi J, Ohki T, Tsuda S (2009) Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain. Virology 390:239–249

    Article  PubMed  CAS  Google Scholar 

  16. Monkewich S, Lin HX, Fabian MR, Xu W, Na H, Ray D, Chernysheva OA, Nagy PD, White KA (2005) The p92 polymerase coding region contains an internal RNA element required at an early step in tombusvirus genome replication. J Virol 79:4848–4858

    Article  PubMed  CAS  Google Scholar 

  17. Mueller S, Coleman JR, Papamichail D, Ward CB, Nimnual A, Futcher B, Skiena S, Wimmer E (2010) Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol 28:723–726

    Article  PubMed  CAS  Google Scholar 

  18. Mueller S, Papamichail D, Coleman JR, Skiena S, Wimmer E (2006) Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol 80:9687–9696

    Article  PubMed  CAS  Google Scholar 

  19. Nishiguchi M, Kobayashi K (2011) Attenuated plant viruses: preventing virus diseases and understanding the molecular mechanism. J Gen Plant Pathol 77:221–229

    Article  Google Scholar 

  20. Novoa EM, Ribas de Pouplana L (2012) Speeding with control: codon usage, tRNAs, and ribosomes. Trends Genet 28:574–581

    Article  PubMed  CAS  Google Scholar 

  21. Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42

    Article  PubMed  CAS  Google Scholar 

  22. Pogany J, White KA, Nagy PD (2005) Specific binding of tombusvirus replication protein p33 to an internal replication element in the viral RNA is essential for replication. J Virol 79:4859–4869

    Article  PubMed  CAS  Google Scholar 

  23. Zhou J, Liu WJ, Peng SW, Sun XY, Frazer I (1999) Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J Virol 73:4972–4982

    PubMed  CAS  Google Scholar 

  24. Zhou H, Wang H, Huang LF, Naylor M, Clifford P (2005) Heterogeneity in codon usages of sobemovirus genes. Arch Virol 150:1591–1605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Science and Technology Agency (JST), the A-step feasibility study program, exploratory research (#AS232Z00534E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomofumi Mochizuki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usami, A., Mochizuki, T., Tsuda, S. et al. Large-scale codon de-optimisation of the p29 replicase gene by synonymous substitutions causes a loss of infectivity of melon necrotic spot virus. Arch Virol 158, 1979–1985 (2013). https://doi.org/10.1007/s00705-013-1683-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1683-x

Keywords

Navigation