Skip to main content

Advertisement

Log in

Human metapneumovirus G protein is highly conserved within but not between genetic lineages

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human metapneumovirus (HMPV) is an important cause of acute respiratory illnesses in children. HMPV encodes two major surface glycoproteins, fusion (F) and glycoprotein (G). The function of G has not been fully established, though it is dispensable for in vitro and in vivo replication. We analyzed 87 full-length HMPV G sequences from isolates collected over 20 years. The G sequences fell into four subgroups with a mean 63 % amino acid identity (minimum 29 %). The length of G varied from 217 to 241 residues. Structural features such as proline content and N- and O-glycosylation sites were present in all strains but quite variable between subgroups. There was minimal drift within the subgroups over 20 years. The estimated time to the most recent common ancestor was 215 years. HMPV G was conserved within lineages over 20 years, suggesting functional constraints on diversity. However, G was poorly conserved between subgroups, pointing to potentially distinct roles for G among different viral lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. van den Hoogen BG et al (2001) A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 7(6):719–724

    Article  PubMed  Google Scholar 

  2. Boivin G et al (2007) An outbreak of severe respiratory tract infection due to human metapneumovirus in a long-term care facility. Clin Infect Dis 44(9):1152–1158

    Article  PubMed  Google Scholar 

  3. Dollner H et al (2004) Outbreak of human metapneumovirus infection in norwegian children. Pediatr Infect Dis J 23(5):436–440

    Article  PubMed  Google Scholar 

  4. Ebihara T et al (2004) Human metapneumovirus infection in Japanese children. J Clin Microbiol 42(1):126–132

    Article  PubMed  Google Scholar 

  5. Esper F et al (2004) A 1-year experience with human metapneumovirus in children aged < 5 years. J Infect Dis 189(8):1388–1396

    Article  PubMed  Google Scholar 

  6. Gray GC et al (2006) Multi-year study of human metapneumovirus infection at a large US Midwestern Medical Referral Center. J Clin Virol 37(4):269–276

    Article  PubMed  Google Scholar 

  7. Hamelin ME et al (2005) Human metapneumovirus infection in adults with community-acquired pneumonia and exacerbation of chronic obstructive pulmonary disease. Clin Infect Dis 41(4):498–502

    Article  PubMed  CAS  Google Scholar 

  8. Kahn JS (2006) Epidemiology of human metapneumovirus. Clin Microbiol Rev 19(3):546–557

    Article  PubMed  CAS  Google Scholar 

  9. Madhi SA et al (2007) Seasonality, incidence, and repeat human metapneumovirus lower respiratory tract infections in an area with a high prevalence of human immunodeficiency virus type-1 infection. Pediatr Infect Dis J 26(8):693–699

    Article  PubMed  Google Scholar 

  10. Maggi F et al (2003) Human metapneumovirus associated with respiratory tract infections in a 3-year study of nasal swabs from infants in Italy. J Clin Microbiol 41(7):2987–2991

    Article  PubMed  Google Scholar 

  11. Martinello RA et al (2006) Human metapneumovirus and exacerbations of chronic obstructive pulmonary disease. J Infect 53(4):248–254

    Article  PubMed  Google Scholar 

  12. van den Hoogen BG, Osterhaus DM, Fouchier RA (2004) Clinical impact and diagnosis of human metapneumovirus infection. Pediatr Infect Dis J 23(1 Suppl):S25–S32

    PubMed  Google Scholar 

  13. Williams JV et al (2010) Population-based incidence of human metapneumovirus infection among hospitalized children. J Infect Dis 201(12):1890–1898

    Article  PubMed  Google Scholar 

  14. Williams JV et al (2004) Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N Engl J Med 350(5):443–450

    Article  PubMed  CAS  Google Scholar 

  15. Williams JV et al (2006) The role of human metapneumovirus in upper respiratory tract infections in children: a 20-year experience. J Infect Dis 193(3):387–395

    Article  PubMed  Google Scholar 

  16. Buys SB, du Preez JH, Els HJ (1989) The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa. Onderstepoort J Vet Res 56(2):87–98

    PubMed  CAS  Google Scholar 

  17. Njenga MK, Lwamba HM, Seal BS (2003) Metapneumoviruses in birds and humans. Virus Res 91(2):163–169

    Article  PubMed  CAS  Google Scholar 

  18. Toquin D et al (2003) Subgroup C avian metapneumovirus (MPV) and the recently isolated human MPV exhibit a common organization but have extensive sequence divergence in their putative SH and G genes. J Gen Virol 84(Pt 8):2169–2178

    Article  PubMed  CAS  Google Scholar 

  19. de Graaf M et al (2008) Evolutionary dynamics of human and avian metapneumoviruses. J Gen Virol 89(Pt 12):2933–2942

    Article  PubMed  Google Scholar 

  20. Yang CF et al (2009) Genetic diversity and evolution of human metapneumovirus fusion protein over twenty years. Virol J 6:138

    Article  PubMed  Google Scholar 

  21. Cseke G et al (2009) Integrin alphavbeta1 promotes infection by human metapneumovirus. Proc Natl Acad Sci U S A 106(5):1566–1571

    Article  PubMed  CAS  Google Scholar 

  22. de Graaf M et al (2009) Fusion protein is the main determinant of metapneumovirus host tropism. J Gen Virol 90(Pt 6):1408–1416

    Article  PubMed  Google Scholar 

  23. Miller SA et al (2007) Examination of a fusogenic hexameric core from human metapneumovirus and identification of a potent synthetic peptide inhibitor from the heptad repeat 1 region. J Virol 81(1):141–149

    Article  PubMed  CAS  Google Scholar 

  24. Schowalter RM, Smith SE, Dutch RE (2006) Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH. J Virol 80(22):10931–10941

    Article  PubMed  CAS  Google Scholar 

  25. Thammawat S et al (2008) Role of cellular glycosaminoglycans and charged regions of viral G protein in human metapneumovirus infection. J Virol 82(23):11767–11774

    Article  PubMed  CAS  Google Scholar 

  26. Biacchesi S et al (2004) Recombinant human Metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate. J Virol 78(23):12877–12887

    Article  PubMed  CAS  Google Scholar 

  27. Biacchesi S et al (2005) Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2–2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates. J Virol 79(19):12608–12613

    Article  PubMed  CAS  Google Scholar 

  28. Bao X et al (2008) Human metapneumovirus glycoprotein G inhibits innate immune responses. PLoS Pathog 4(5):e1000077

    Article  PubMed  Google Scholar 

  29. Kolli D et al (2011) Human metapneumovirus glycoprotein G inhibits TLR4-dependent signaling in monocyte-derived dendritic cells. J Immunol 187(1):47–54

    Article  PubMed  CAS  Google Scholar 

  30. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  PubMed  CAS  Google Scholar 

  31. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  32. Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174

    Article  PubMed  CAS  Google Scholar 

  33. van den Hoogen BG et al (2004) Antigenic and genetic variability of human metapneumoviruses. Emerg Infect Dis 10(4):658–666

    Article  PubMed  Google Scholar 

  34. Johnson PR et al (1987) The G glycoprotein of human respiratory syncytial viruses of subgroups A and B: extensive sequence divergence between antigenically related proteins. Proc Natl Acad Sci U S A 84(16):5625–5629

    Article  PubMed  CAS  Google Scholar 

  35. Wertz GW et al (1985) Nucleotide sequence of the G protein gene of human respiratory syncytial virus reveals an unusual type of viral membrane protein. Proc Natl Acad Sci U S A 82(12):4075–4079

    Article  PubMed  CAS  Google Scholar 

  36. Roberts SR et al (1994) The membrane-associated and secreted forms of the respiratory syncytial virus attachment glycoprotein G are synthesized from alternative initiation codons. J Virol 68(7):4538–4546

    PubMed  CAS  Google Scholar 

  37. Trento A et al (2006) Natural history of human respiratory syncytial virus inferred from phylogenetic analysis of the attachment (G) glycoprotein with a 60-nucleotide duplication. J Virol 80(2):975–984

    Article  PubMed  CAS  Google Scholar 

  38. Martin DP et al (2010) RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26(19):2462–2463

    Article  PubMed  CAS  Google Scholar 

  39. Gaunt ER et al (2011) Molecular epidemiology and evolution of human respiratory syncytial virus and human metapneumovirus. PloS one 6(3):e17427

    Article  PubMed  CAS  Google Scholar 

  40. Padhi A, Verghese B (2008) Positive natural selection in the evolution of human metapneumovirus attachment glycoprotein. Virus Res 131(2):121–131

    Article  PubMed  CAS  Google Scholar 

  41. Skiadopoulos MH et al (2006) Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity. Virology 345(2):492–501

    Article  PubMed  CAS  Google Scholar 

  42. Ryder AB et al (2010) Soluble recombinant human metapneumovirus G protein is immunogenic but not protective. Vaccine 28(25):4145–4152

    Article  PubMed  CAS  Google Scholar 

  43. Mok H et al (2008) An alphavirus replicon-based human metapneumovirus vaccine is immunogenic and protective in mice and cotton rats. J Virol 82(22):11410–11418

    Article  PubMed  CAS  Google Scholar 

  44. Endo R et al (2008) Detection of four genetic subgroup-specific antibodies to human metapneumovirus attachment (G) protein in human serum. J Gen Virol 89(Pt 8):1970–1977

    Article  PubMed  CAS  Google Scholar 

  45. Herd KA et al (2006) Cytotoxic T-lymphocyte epitope vaccination protects against human metapneumovirus infection and disease in mice. J Virol 80(4):2034–2044

    Article  PubMed  CAS  Google Scholar 

  46. Herd KA et al (2008) Major histocompatibility complex class I cytotoxic T lymphocyte immunity to human metapneumovirus (hMPV) in individuals with previous hMPV infection and respiratory disease. J Infect Dis 197(4):584–592

    Article  PubMed  CAS  Google Scholar 

  47. Erickson JJ et al (2012) Viral acute lower respiratory infections impair CD8 + T cells through PD-1. J Clin Invest 122(8):2967–2982

    Article  PubMed  CAS  Google Scholar 

  48. Liu L, Bastien N, Li Y (2007) Intracellular processing, glycosylation, and cell surface expression of human metapneumovirus attachment glycoprotein. J Virol 81(24):13435–13443

    Article  PubMed  CAS  Google Scholar 

  49. Wertheim JO, Worobey M (2009) Relaxed selection and the evolution of RNA virus mucin-like pathogenicity factors. J Virol 83(9):4690–4694

    Article  PubMed  CAS  Google Scholar 

  50. Schildgen V et al (2011) Human Metapneumovirus: lessons learned over the first decade. Clin Microbiol Rev 24(4):734–754

    Article  PubMed  Google Scholar 

  51. McCarthy AJ, Goodman SJ (2010) Reassessing conflicting evolutionary histories of the Paramyxoviridae and the origins of respiroviruses with Bayesian multigene phylogenies. Infect Genet Evol 10(1):97–107

    Article  PubMed  CAS  Google Scholar 

  52. Rambaut A et al (2008) The genomic and epidemiological dynamics of human influenza A virus. Nature 453(7195):615–619

    Article  PubMed  CAS  Google Scholar 

  53. van den Hoogen BG et al (2002) Analysis of the genomic sequence of a human metapneumovirus. Virology 295(1):119–132

    Article  PubMed  Google Scholar 

  54. Sharp PM, Simmonds P (2011) Evaluating the evidence for virus/host co-evolution. Curr Opin Virol 1(5):436–441

    Article  PubMed  Google Scholar 

  55. Velayudhan BT et al (2006) Human metapneumovirus in turkey poults. Emerg Infect Dis 12(12):1853–1859

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by NIH AI-82417 and AI-85062 to JVW. The Vanderbilt Vaccine Clinic was supported in part by NIH Respiratory Pathogens Research Unit N01-AI-65298 and by NIH GCRC center award RR 00095.

Conflict of interest

Chiaoyin K. Wang, Chin-Fen Yang, Linda D. Lintao, Alexis Liem, and Marla Chu were employees of MedImmune at the time of this study. John Williams serves on the Scientific Advisory Board of Quidel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John V. Williams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 271 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CF., Wang, C.K., Tollefson, S.J. et al. Human metapneumovirus G protein is highly conserved within but not between genetic lineages. Arch Virol 158, 1245–1252 (2013). https://doi.org/10.1007/s00705-013-1622-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1622-x

Keywords

Navigation