Skip to main content
Log in

Bacteriophage vB_EcoM_FV3: a new member of “rV5-like viruses”

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A proposed new genus of the family Myoviridae, “rV5-like viruses”, includes two lytic bacteriophages: Escherichia coli O157: H7-specific bacteriophage rV5 and Salmonella phage PVP-SE1. Here, we present basic properties and genomic characterization of a novel rV5-like phage, vB_EcoM_FV3, which infects E. coli K-12-derived laboratory strains and replicates at high temperature (up to 47 °C). The 136,947-bp genome of vB_EcoM_FV3 contains 218 open reading frames and encodes 5 tRNAs. The genomic content and organization of vB_EcoM_FV3 is more similar to that of rV5 than to PVP-SE1, but all three phages share similar morphological characteristics and form a homogeneous phage group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Hatfull GF (2008) Bacteriophage genomics. Curr Opin Microbiol 11:447–453. doi:10.1016/j.mib.2008.09.004

    Article  PubMed  CAS  Google Scholar 

  2. Lavigne R, Seto D, Mahadevan P, Ackermann H-W, Kropinski AM (2008) Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 159:406–414. doi:10.1016/j.resmic.2008.03.005

    Article  PubMed  CAS  Google Scholar 

  3. Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackerman HW, Kropinski AM (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224. doi:10.1186/1471-2180-9-224

    Article  PubMed  Google Scholar 

  4. Santos SB, Kropinski AM, Ceyssens P-J, Ackermann H-W, Villegas A, Lavigne R, Krylov VN, Carvalho CM, Ferreira EC, Azeredo J (2011) Genomic and proteomic characterization of the broad host range Salmonella phage PVP-SE1: the creation of a new phage genus. J Virol 85:11265–11273. doi:10.1128/JVI.01769-10

    Article  PubMed  CAS  Google Scholar 

  5. Santos SB, Fernandes E, Carvalho CM, Sillankorva S, Krylov VN, Pleteneva EA, Shaburova OV, Nicolau A, Ferreira EC, Azeredo J (2010) Selection and characterization of a multivalent Salmonella phage and its production in a nonpathogenic Escherichia coli strain. Appl Environ Microbiol 76:7338–7342. doi:10.1128/AEM.00922-10

    Article  PubMed  CAS  Google Scholar 

  6. Niu YD, Johnson RP, Xu Y, McAllister TA, Sharma R, Louie M, Stanford K (2009) Host range and lytic capability of four bacteriophages against bovine and clinical human isolates of Shiga toxin-producing Escherichia coli O157:H7. J Appl Microbiol 107:646–656. doi:10.1111/j.1365-2672.2009.04231.x

    Article  PubMed  CAS  Google Scholar 

  7. Stanford K, McAllister TA, Niu YD, Stephens TP, Mazzocco A, Waddell TE, Johnson RP (2010) Oral delivery systems for encapsulated bacteriophages targeted at Escherichia coli O157:H7 in feedlot cattle. J Food Prot 73:1304–1312

    PubMed  CAS  Google Scholar 

  8. Carlson K, Miller E (1994) Experiments in T4 genetics. In: Karam JD (ed) Molecular biology of bacteriophage T4. ASM Press, Washington DC, pp 419–483

    Google Scholar 

  9. Carver T, Berriman M, Tivey A, Patel C, Böhme U, Barrell BG, Parkhill J, Rajandream M-A (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676. doi:10.1093/bioinformatics/btn529

    Article  PubMed  CAS  Google Scholar 

  10. Veluchamy A, Mary S, Acharya V, Mehta P, Deva T, Krishnaswamy S (2009) HNHDb: A database on pattern based classification of HNH domains reveals functional relevance of sequence patterns and domain associations. Bioinformation 4:80–83

    Article  PubMed  Google Scholar 

  11. Scholl D, Rogers S, Adhya S, Merril CR (2001) Bacteriophage K1–5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75:2509–2515. doi:10.1128/JVI.75.6.2509-2515.2001

    Article  PubMed  CAS  Google Scholar 

  12. Yoichi M, Abe M, Miyanaga K, Unno H, Tanji Y (2005) Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J Biotechnol 115:101–107. doi:10.1016/j.jbiotec.2004.08.003

    Google Scholar 

  13. Morita M, Fischer CR, Mizoguchi K, Yoichi M, Oda M, Tanji Y, Unno H (2002) Amino acid alterations in Gp38 of host range mutants of PP01 and evidence for their infection of an ompC null mutant of Escherichia coli O157:H7. FEMS Microbiol Lett 216:243–248

    Article  PubMed  CAS  Google Scholar 

  14. Bollback JP, Huelsenbeck JP (2009) Parallel genetic evolution within and between bacteriophage species of varying degrees of divergence. Genetics 181:225–234. doi:10.1534/genetics.107.085225

    Article  PubMed  CAS  Google Scholar 

  15. Brown CJ, Zhao L, Evans KJ, Ally D, Stancik AD (2010) Positive selection at high temperature reduces gene transcription in the bacteriophage ϕX174. BMC Evol Biol 10:378. doi:10.1186/1471-2148-10-378

    Article  PubMed  CAS  Google Scholar 

  16. Tenaillon O, Rodrίguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS (2012) The molecular diversity of adaptive convergence. Science 335:457–461. doi:10.1126/science.1212986

    Article  PubMed  CAS  Google Scholar 

  17. Friman V-P, Hiltunen T, Jalasvuori M, Lindstedt C, Laanto E, Örmälä AM, Laakso J, Mappes J, Bamford JK (2011) High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs. PLoS One 6:e17651. doi:10.1371/journal.pone.0017651

    Article  PubMed  CAS  Google Scholar 

  18. Yue W-F, Du M, Zhu M-J (2012) High temperature in combination with UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157:H7 to non-pathogenic E. coli. PLoS One 7:e31308. doi:10.1371/journal.pone.0031308

    Article  PubMed  CAS  Google Scholar 

  19. Wiberg JS, Mowrey-McKee MF, Stevens EJ (1988) Induction of the heat shock regulon of Escherichia coli markedly increases production of bacterial viruses at high temperatures. J Virol 62:234–245

    PubMed  CAS  Google Scholar 

  20. Pitout JDD (2012) Extraintestinal pathogenic Escherichia coli: a combination of virulence with antibiotic resistance. Front Microbiol 3:9. doi:10.3389/fmicb.2012.00009

    PubMed  Google Scholar 

  21. Kudva IT, Jelacic S, Tarr PI, Youderian P, Hovde CJ (1999) Biocontrol of Escherichia coli O157:H7 with O157-specific bacteriophages. Appl Environ Microbiol 65:3767–3773

    PubMed  CAS  Google Scholar 

  22. Chibani-Chenoufi S, Sidoti J, Bruttin A, Kutter E, Sarker S, Brüssow H (2004) In vitro and in vivo bacteriolytic activities of Escherichia coli phages: implications for phage therapy. Antimicrob Agents Chemother 48:2558–2569. doi:10.1128/AAC.48.7.2558-2569.2004

    Article  Google Scholar 

  23. Villegas A, She Y-M, Kropinski AM, Lingohr EJ, Mazzocco A, Ojha S, Waddell TE, Ackermann H-W, Moyles DM, Ahmed R, Johnson RP (2009) The genome and proteome of a virulent Escherichia coli O157:H7 bacteriophage closely resembling Salmonella phage Felix O1. Virol J 6:41. doi:10.1186/1743-422×-6-41

    Article  PubMed  Google Scholar 

  24. Kutter EM, Skutt-Kakaria K, Blasdel B, El-Shibiny A, Castano A, Bryan D, Kropinski AM, Villegas A, Ackermann H-W, Toribio AL, Pickard D, Anany H, Callaway T, Brabban AD (2011) Characterization of a ViI-like phage specific to Escherichia coli O157:H7. Virol J 8:430. doi:10.1186/1743-422X-8-430

    Article  PubMed  CAS  Google Scholar 

  25. Liao WC, Ng WV, Lin IH, Syu WJ, Liu TT, Chang CH (2011) T4-Like genome organization of the Escherichia coli O157:H7 lytic phage AR1J Virol 85:6567–6578. doi:10.1128/JVI.02378-10

    Google Scholar 

  26. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156

    Article  PubMed  CAS  Google Scholar 

  27. Molineux I (2006) The T7 group. In: Calendar R (ed) The bacteriophages. Oxford University Press: New York, pp 277–301

Download references

Acknowledgments

We thank Dr. Ken Kreuzer, Dr. Victor Krylov and Dr. Lindsay W. Black for E. coli strains. This work was supported in part by the Lithuanian State Science and Studies Foundation (Grant No. N-07005) and was also funded by a grant (No. MIP-76/2010) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Truncaite.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2012_1449_MOESM1_ESM.doc

Supplementary material 1 Table 1S. A list of bacteriophage vB_EcoM_FV3 putative genes with predicted functions. (DOC 285 kb)

705_2012_1449_MOESM2_ESM.tif

Supplementary material 2 Fig. 1S. Functional genomic map of bacteriophage vB_EcoM_FV3. Putative genes with predicted coding functions are represented as arrows. The colour code for the online version of the article is as follows: yellow—DNA replication, recombination, repair and packaging; brown—transcription, translation, nucleotide metabolism; blue—virion structure; green—chaperones/assembly; purple—lysis, host or phage interactions; grey—ORFs of unknown function; red—unique FV3 ORFs of unknown function; black—tRNA. (TIFF 4748 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truncaite, L., Šimoliūnas, E., Zajančkauskaite, A. et al. Bacteriophage vB_EcoM_FV3: a new member of “rV5-like viruses”. Arch Virol 157, 2431–2435 (2012). https://doi.org/10.1007/s00705-012-1449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1449-x

Keywords

Navigation