Skip to main content
Log in

Quantitative comparison of the RNA bacteriophage Qβ infection cycle in rich and minimal media

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

As bacteriophages are dependent on the host for multiplication, their infection cycle is expected to be influenced by the host’s physiological state. To elucidate how and which steps of the bacteriophage infection cycle are influenced by changes in the physiological state of the host, we quantitatively compared the infection cycle of lytic RNA bacteriophage Qβ in Escherichia coli cultured in rich and minimal media. The adsorption rate constants in both media were almost the same. A difference of 15 min in the latent period and an approximately twofold increase in the rate of phage release were observed, although approximately 105 molecules of coat proteins, equivalent to approximately 600–1000 phage particles, accumulated in an infected cell prior to burst. Addition of Mg2+ to minimal medium markedly affected the Qβ infection cycle, and these results suggest that Mg2+ is required for the stages of the infectious cycle after adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abedon ST (2008) Bacteriophage ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  PubMed  CAS  Google Scholar 

  3. Chao L, Levin BR (1977) A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58:369–378

    Article  Google Scholar 

  4. Chao L (1990) Fitness of RNA virus decreased by Muller’s ratchet. Nature 348:454–455

    Article  PubMed  CAS  Google Scholar 

  5. Lenski RE (1988) Dynamics of interactions between bacteria and virulent bacteriophage. Adv Microb Ecol 10:1–44

    Article  CAS  Google Scholar 

  6. Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178

    Article  PubMed  CAS  Google Scholar 

  7. Bohannan BJ, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    Article  Google Scholar 

  8. Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci 269:931–936

    Article  PubMed  Google Scholar 

  9. Rodriguez-Valera F, Martin-Cuadrado A-B, Rodriguez-Brito B, Pašić L, Thingstad TF, Rohwer F, Mira A (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836

    Article  PubMed  CAS  Google Scholar 

  10. Domingo-Calap P, Pereira-GÓMez M, SanjuÁN R (2010) Selection for thermostability can lead to the emergence of mutational robustness in an RNA virus. J Evol Biol 23:2453–2460

    Article  PubMed  CAS  Google Scholar 

  11. Kashiwagi A, Yomo T (2011) Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage Qβ and Escherichia coli. PLoS Genet. doi:10.1371/journal.pgen.1002188

    PubMed  Google Scholar 

  12. Kutter E, Sulakvelidze A (2005) Bacteriophages, biology and applications. CRC Press, Boca Raton

    Google Scholar 

  13. Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  PubMed  CAS  Google Scholar 

  14. Tao H, Bausch C, Richmond C, Blattner FR, Conway T (1999) Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol 181:6425–6440

    PubMed  CAS  Google Scholar 

  15. Biebricher CK, Düker EM (1984) F and type 1 piliation of Escherichia coli. J Gen Microbiol 130:951–957

    PubMed  CAS  Google Scholar 

  16. Watanabe I, Miyake T, Sakurai T, Shiba T, Ohno T (1967) Isolation and grouping of RNA phages. Proc Japan Acad 43:204–209

    CAS  Google Scholar 

  17. Overby LR, Barlow GH, Doi RH, Jacob M, Spiegelman S (1966) Comparison of two serologically distinct ribonucleic acid bacteriophages. II. Properties of the nucleic acids and coat proteins. J Bacteriol 92:739–745

    PubMed  CAS  Google Scholar 

  18. Kozak M, Nathans D (1972) Translation of the genome of a ribonucleic acid bacteriophage. Bacteriol Rev 36:109–134

    PubMed  CAS  Google Scholar 

  19. Van Duin J, Tsareva N (2006) Single-stranded RNA phages. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 175–196

    Google Scholar 

  20. Tsukada K, Okazaki M, Kita H, Inokuchi Y, Urabe I, Yomo T (2009) Quantitative analysis of the bacteriophage Qβ infection cycle. Biochim Biophys Acta 1790:65–70

    Article  PubMed  CAS  Google Scholar 

  21. Leschine SB, Jacobson LA (1979) Control of protein synthesis in Escherichia coli: control of bacteriophage Qβ coat protein synthesis after energy source shift-down. J Virol 30:267–278

    PubMed  CAS  Google Scholar 

  22. Woody MA, Cliver DO (1995) Effects of temperature and host cell growth phase on replication of F-speciic RNA coliphage Qβ. Appl Environ Microbiol 61:1520–1526

    PubMed  CAS  Google Scholar 

  23. Woody MA, Cliver DO (1997) Replication of coliphage Qβ as affected by host cell number, nutrition, competition from insusceptible cells and nonFRNA coliphages. J Appl Microbiol 82:431–440

    Article  PubMed  CAS  Google Scholar 

  24. Watanabe I, Sakurai T, Furuse K, Ando A (1979) “Pseudolysogenization” by RNA phage Qβ. Microbiol Immunol 23:1077–1083

    PubMed  CAS  Google Scholar 

  25. Kashiwagi A, Sakurai T, Tsuru S, Ying BW, Mori K, Yomo T (2009) Construction of Escherichia coli gene expression level perturbation collection. Metab Eng 11:56–63

    Article  PubMed  CAS  Google Scholar 

  26. Carlson K (2005) Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sulakvelidze A (eds) Bacteriophages, biology and applications. CRC Press, Boca Raton, pp 437–494

    Google Scholar 

  27. Zar JH (2010) Simple linear regression. In: Biostatistical analysis, 5th edn. Pearson education Inc., Upper Saddle River, pp 328–362

  28. Ellis EL, Delbruck M (1939) The growth of bacteriophage. J Gen Physiol 22:365–383

    Article  PubMed  CAS  Google Scholar 

  29. Paranchych W (1975) Attachment, ejection and penetration stages of the RNA phage infectious process. In: Zinder ND (ed) RNA phages. Cold Spring Harbor Laboratory, Cold spring harbor, New York, pp 85–112

    Google Scholar 

  30. Date T (1979) Kinetic studies of the interaction between MS2 phage and F pilus of Escherichia coli. Eur J Biochem 96:167–175

    Article  PubMed  CAS  Google Scholar 

  31. Danziger RE, Paranchych W (1970) Stages in phage R17 infection. II. Ionic requirements for phage R17 attachment to F-pili. Virology 40:547–553

    Article  PubMed  CAS  Google Scholar 

  32. Kim H, Yin J (2004) Energy-efficient growth of phage Qβ in Escherichia coli. Biotechnol Bioeng 88:148–156

    Article  PubMed  CAS  Google Scholar 

  33. Valentine RC, Strand M (1965) Complexes of F-pili and RNA bacteriophage. Science 148:511–513

    Article  PubMed  CAS  Google Scholar 

  34. Paranchych W (1966) Stages in phage R17 infection: the role of divalent cations. Virology 28:90–99

    Article  PubMed  CAS  Google Scholar 

  35. Bernhardt TG, Wang IN, Struck DK, Young R (2001) A protein antibiotic in the phage Qβ virion: diversity in lysis targets. Science 292:2326–2329

    Article  PubMed  CAS  Google Scholar 

  36. Bernhardt TG, Wang IN, Struck DK, Young R (2002) Breaking free: “protein antibiotics” and phage lysis. Res Microbiol 153:493–501

    Article  PubMed  CAS  Google Scholar 

  37. Karnik S, Billeter M (1983) The lysis function of RNA bacteriophage Qβ is mediated by the maturation (A2) protein. EMBO J 2:1521–1526

    PubMed  CAS  Google Scholar 

  38. Eigen M, Biebricher CK, Gebinoga M (1991) The hypercycle. Coupling of RNA and protein biosynthesis in the infection cycle of an RNA bacteriophage. Biochemistry 30:11005–11018

    Article  PubMed  CAS  Google Scholar 

  39. Schwartz FM, Zinder ND (1963) Crystalline aggregates in bacterial cells infected with the RNA bacteriophage f2. Virology 21:276–278

    Article  PubMed  CAS  Google Scholar 

  40. Meyvisch C, Teuchy H, van Montagu M (1974) Electron microscopy of the intracellular development of bacteriophage MS2 in Escherichia coli. J Virol 13:1356–1367

    PubMed  CAS  Google Scholar 

  41. Bradley DE (1966) The structure and infective process of a Pseudomonas aeruginosa bacteriophage containing ribonucleic acid. J Gen Microbiol 45:83–96

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Tetsuya Yomo (Osaka University) for critical comments and Dr. Koji Tsukada (Osaka University) for valuable discussions and providing plasmid DNA. We thank Dr. Kotaro Mori (Ishihara Sangyo Kaisha, Ltd.) for careful reading of this manuscript, and Dr. Takahiro Toba and the members of RNA Research Center (Hirosaki University) for their cooperation. This work was supported in part by MEXT KAKENHI (21770255 and 23570268, to AK), Inamori Foundation (to AK), Kato Memorial Bioscience Foundation (to AK), Hirosaki University Grant for Exploratory Research by Young Scientists (to AK), Grant for Priority Research Designated by the President of Hirosaki University, Grant for Hirosaki University Institutional Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Kashiwagi.

Additional information

T. Inomata and H. Kimura contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inomata, T., Kimura, H., Hayasaka, H. et al. Quantitative comparison of the RNA bacteriophage Qβ infection cycle in rich and minimal media. Arch Virol 157, 2163–2169 (2012). https://doi.org/10.1007/s00705-012-1419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1419-3

Keywords

Navigation