Skip to main content

Advertisement

Log in

First complete and productive cell culture model for members of the genus Iridovirus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Chilo iridescent virus (CIV; the type strain of the genus Iridovirus) replicates productively in larvae of the boll weevil, Anthonomus grandis. This study focuses on characterizing productive infections of a boll weevil cell line, BRL-AG-3A (AG3A), starting with CIV reared in the waxworm, Galleria mellonella. We show that CIV can be continually and productively passaged to high titer in AG3A cells. The replication of larval-derived CIV in AG3A was analyzed by observing viral DNA replication and restriction endonuclease digestion profiles, morphogenesis, and infectivity using TCID50 assays with AG3A as an indicator cell line. The data showed that virus passaged in the AG3A host is stable. AG3A cells are more efficient than previously utilized CF-124T cells from Choristoneura fumiferana. This system constitutes a superior model for cellular and molecular studies on CIV; it represents the first complete, productive cell culture model for the replication of CIV or any member of the genus Iridovirus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Williams T (1998) Invertebrate Iridescent viruses. In: Miller LK, Ball LA (eds) The insect viruses. Springer, New York, pp 31–68

  2. Williams T, Barbosa-Solomieu V, Chinchar VG (2005) A decade of advances in iridovirus research. Adv Virus Res 65:173–248

    Article  PubMed  CAS  Google Scholar 

  3. McLaughlin RE, Scott HA, Bell MR (1972) Infection of the boll weevil by Chilo iridescent virus. J Invertebr Pathol 19:285–290

    Article  Google Scholar 

  4. Bilimoria SL (2001) Use of viral proteins for controlling the cotton boll weevil and other insect pests. United States Patent No. 6200561 B1. (6200561 B1). 13 Mar 2001

  5. Bilimoria SL (2009) Use of iridoptin to induce toxicity in insects. US Patent Application Number: PCT/US2008/075523; International Patent Application Number: WO/2009/033120. Published March, 2009

  6. Fukaya M, Nasu S (1966) A Chilo Iridescent Virus (CIV) from the rice stem borer, Chilo suppresalis Walker (Lepidoptera, Pyralidae). Appl Entomol Zool 1:69–72

    Google Scholar 

  7. Henderson CW, Johnson CL, Lodhi SA, Bilimoria SL (2001) Replication of Chilo iridescent virus in the cotton boll weevil, Anthonomus grandis, and development of an infectivity assay. Arch Virol 146:767–775

    Article  PubMed  CAS  Google Scholar 

  8. Paul ER, Chitnis NS, Henderson CW, Kaul RJ, D’Costa SM, Bilimoria SL (2007) Induction of apoptosis by iridovirus virion protein extract. Arch Virol 152:1353–1364

    Article  PubMed  CAS  Google Scholar 

  9. Chitnis NS, D’Costa SM, Paul ER, Bilimoria SL (2008) Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase. Virology 370:333–342

    Article  PubMed  CAS  Google Scholar 

  10. Chitnis NS, Paul ER, Lawrence PK, Henderson CW, Ganapathy S, Taylor PV, Virdi KS, D’Costa SM, May AR, Bilimoria SL (2011) A virion-associated protein kinase induces apoptosis. J Virol 85:13144–13152

    Article  PubMed  CAS  Google Scholar 

  11. Bellett AJ, Mercer EH (1964) The multiplication of Sericesthis iridescent virus in cell cultures from Antheraea eucalypti Scott I. Qualitative experiments. Virology 24:645–653

    Article  PubMed  CAS  Google Scholar 

  12. Day MF, Gilbert N (1967) The number of particles of Sericesthis iridescent virus required to produce infections of Galleria larvae. Aust J Biol Sci 20:691–693

    PubMed  CAS  Google Scholar 

  13. Brown DA, Lescott T, Harrap KA, Kelly DC (1978) The replication and titration of iridescent virus type 22 in Spodoptera frugiperda cells. J Gen Virol 38:175–178

    Article  PubMed  CAS  Google Scholar 

  14. Lea MS (1985) A Sericesthis iridescent virus infection of the hemocytes of the waxwom, Galleria mellonella (Lepidoptera). J Invertebr Pathol 46:219–230

    Article  Google Scholar 

  15. Tajbakhsh S, Kiss G, Lee PE, Seligy VL (1990) Semipermissive replication of Tipula iridescent virus in Aedes albopictus C6/36 cells. Virology 174:264–275

    Article  PubMed  CAS  Google Scholar 

  16. Czuba M, Tajbakhsh S, Walker T, Dove MJ, Johnson BF, Seligy VL (1994) Plaque assay and replication of Tipula iridescent virus in Spodoptera frugiperda ovarian cells. Res Virol 145:319–330

    Article  PubMed  CAS  Google Scholar 

  17. Kelly DC, Tinsley TW (1974) Iridescent virus replication: a microscope study of Aedes aegypti and Antherea eucalypti cells in culture infected with iridescent virus types 2 and 6. Microbios 9:75–93

    PubMed  CAS  Google Scholar 

  18. Ohba M, Aizawa K (1978) Comparative titration of Chilo iridescent virus in vivo and in vitro. J Invertebr Pathol 32:394–395

    Article  Google Scholar 

  19. Cerutti M, Guerillon J, Arella M, Devauchelle G (1981) Replication of type 6 iridovirus in various cell lines. C R Seances Acad Sci III 292:797–802

    PubMed  CAS  Google Scholar 

  20. Constantino M, Christian P, Marina CF, Williams T (2001) A comparison of techniques for detecting Invertebrate iridescent virus 6. J Virol Methods 98:109–118

    Article  PubMed  CAS  Google Scholar 

  21. Funk CJ, Hunter WB, Achor DS (2001) Replication of insect iridescent virus 6 in a whitefly cell line. J Invertebr Pathol 77:144–146

    Article  PubMed  CAS  Google Scholar 

  22. Hunter WB, Patte CP, Sinisterra XH, Achor DS, Funk CJ, Polston JE (2001) Discovering new insect viruses: whitefly iridovirus (Homoptera: Aleyrodidae: Bemisia tabaci). J Invertebr Pathol 78:220–225

    Article  PubMed  CAS  Google Scholar 

  23. Hunter WB, Lapointe SL, Sinisterra XH, Achor DS, Funk CJ (2003) Iridovirus in the root weevil Diaprepes abbreviatus. J. Insect Sci 3:9

    PubMed  CAS  Google Scholar 

  24. Bilimoria SL, Sohi SS (1977) Development of an attached strain from a continuous insect cell line. In Vitro 13:461–466

    Article  PubMed  CAS  Google Scholar 

  25. Stiles B, McDonald IC, Gerst JW, Adams TS, Newman SM (1992) Initiation and characterization of five embryonic cell lines from the cotton boll weevil Anthonomus grandis in a commercial serum- free medium. In Vitro Cell Dev Biol Animal 28:355–363

    Article  Google Scholar 

  26. Hink WF (1970) Established insect cell line from the cabbage looper, Trichoplusia ni. Nature 226:466–467

    Article  PubMed  CAS  Google Scholar 

  27. Kelly DC, Tinsley TW (1972) The proteins of iridescent virus types 2 and 6. J Invertebr Pathol 19:273–275

    Article  CAS  Google Scholar 

  28. Reed L, Muench S (1938) A simple method for estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  29. Kafatos FC, Jones CW, Efstratiadis A (1979) Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res 7:1541–1552

    Article  PubMed  CAS  Google Scholar 

  30. Summers MD, Smith GE (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experimental Station Bulletin No. 1555

  31. Williams T (1996) The iridoviruses. Adv Virus Res 46:345–412

    Article  PubMed  CAS  Google Scholar 

  32. Hukuhara T, Hashimoto Y (1967) Multiplication of Tipula and Chilo iridescent viruses in the cells of Antherea eucalypti. J Invertebr Pathol 9:278–281

    Article  Google Scholar 

  33. Kelly DC, Tinsley TW (1974) Iridescent virus replication: patterns of nucleic acid synthesis in insect cells infected with iridescent virus types 2 and 6. J Invertebr Pathol 24:169–178

    Article  PubMed  CAS  Google Scholar 

  34. McIntosh AH, Kimura M (1974) Replication of the insect Chilo iridescent virus (CIV) in a poikilothermic vertebrate cell line. Intervirology 4:257–267

    PubMed  CAS  Google Scholar 

  35. Williams MR (2003) Cotton Insect Losses 2002, In: Proceedings 2003 Beltwide Cotton Production Conference, National Cotton Council of America, Memphis TN

Download references

Acknowledgments

This work was supported in part by grants to S. L. B. from Texas Advanced Research Program Grant No. 0036444-0148, Texas Advanced Technology Program Grant No. 0036444-0108, and Texas Advanced Technology Program Grant No. 0036444-0046. Support was also provided by Office of the Vice-President for Research, Office of the Provost, and Institute for Biotechnology at Texas Tech University. S. M. D. was partially supported by Summer Research Awards from the Graduate School and the Department of Biological Sciences, Texas Tech University. We are very grateful to Dr. James Kalmakoff for the generous gift of iridescent virus samples and to Dr. Arthur MacIntosh for the gift of BRL-AG-3A cells. We thank Drs. Candace Haigler and Mark Grimson for use of electron microscopy facilities, and Saranya Ganapathy for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shän L. Bilimoria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Costa, S.M., Vigerust, D.J., Perales-Hull, M.R. et al. First complete and productive cell culture model for members of the genus Iridovirus . Arch Virol 157, 2171–2178 (2012). https://doi.org/10.1007/s00705-012-1417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1417-5

Keywords