Skip to main content

Advertisement

Log in

Development of a minigenome system for Andes virus, a New World hantavirus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The development of reverse genetics systems for negative-stranded RNA viruses is a rapidly evolving field that has greatly advanced the study of the many different aspects of the viral life cycle. Andes virus (ANDV) is a highly pathogenic hantavirus found in South America that causes hantavirus pulmonary syndrome but to date remains poorly characterized due to the lack of a reverse genetics system for genetic manipulation. Here, we describe the first successful minigenome system for a New World hantavirus, as well as many of the obstacles that still exist in the development of such a system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Blakqori G, Kochs G, Haller O, Weber F (2003) Functional L polymerase of La Crosse virus allows in vivo reconstitution of recombinant nucleocapsids. J Gen Virol 84:1207–1214

    Article  PubMed  CAS  Google Scholar 

  2. Bridgen A, Elliott RM (1996) Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci USA 93:15400–15404

    Article  PubMed  CAS  Google Scholar 

  3. Canter DM, Perrault J (1996) Stabilization of vesicular stomatitis virus L polymerase protein by P protein binding: a small deletion in the C-terminal domain of L abrogates binding. Virology 219:376–386

    Article  PubMed  CAS  Google Scholar 

  4. Conzelmann KK, Schnell M (1994) Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. J Virol 68:713–719

    PubMed  CAS  Google Scholar 

  5. Emonet SE, Urata S, de la Torre JC (2011) Arenavirus reverse genetics: new approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 411:416–425

    Article  PubMed  CAS  Google Scholar 

  6. Flick K, Hooper JW, Schmaljohn CS, Pettersson RF, Feldmann H, Flick R (2003) Rescue of Hantaan virus minigenomes. Virology 306:219–224

    Article  PubMed  CAS  Google Scholar 

  7. Flick R, Pettersson RF (2001) Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75:1643–1655

    Article  PubMed  CAS  Google Scholar 

  8. Flick R, Flick K, Feldmann H, Elgh F (2003) Reverse genetics for crimean-congo hemorrhagic fever virus. J Virol 77:5997–6006

    Article  PubMed  CAS  Google Scholar 

  9. Groseth A, Feldmann H, Theriault S, Mehmetoglu G, Flick R (2005) RNA polymerase I-driven minigenome system for Ebola viruses. J Virol 79:4425–4433

    Article  PubMed  CAS  Google Scholar 

  10. Hoenen T, Groseth A, de Kok-Mercado F, Kuhn JH, Wahl-Jensen V (2011) Minigenomes, transcription and replication competent virus-like particles and beyond: reverse genetics systems for filoviruses and other negative stranded hemorrhagic fever viruses. Antiviral Res 91:195–208

    Article  PubMed  CAS  Google Scholar 

  11. Ikegami T, Peters CJ, Makino S (2005) Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J Virol 79:5606–5615

    Article  PubMed  CAS  Google Scholar 

  12. Jääskeläinen KM, Kaukinen P, Minskaya ES, Plyusnina A, Vapalahti O, Elliott RM, Weber F, Vaheri A, Plyusnin A (2007) Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter. J Med Virol 79:1527–1536

    Article  PubMed  Google Scholar 

  13. Jonsson CB, Hooper J, Mertz G (2008) Treatment of hantavirus pulmonary syndrome. Antiviral Res 78:162–169

    Article  PubMed  CAS  Google Scholar 

  14. Khaiboullina SF, Morzunov SP, St Jeor SC (2005) Hantaviruses: molecular biology, evolution and pathogenesis. Curr Mol Med 5:773–790

    Article  PubMed  CAS  Google Scholar 

  15. Kukkonen SK, Vaheri A, Plyusnin A (2004) Tula hantavirus L protein is a 250 kDa perinuclear membrane-associated protein. J Gen Virol 85:1181–1189

    Article  PubMed  CAS  Google Scholar 

  16. Levine JR, Prescott J, Brown KS, Best SM, Ebihara H, Feldmann H (2010) Antagonism of type I interferon responses by new world hantaviruses. J Virol 84:11790–11801

    Article  PubMed  CAS  Google Scholar 

  17. Lopez N, Muller R, Prehaud C, Bouloy M (1995) The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 69:3972–3979

    PubMed  CAS  Google Scholar 

  18. Maes P, Clement J, Van Ranst M (2009) Recent approaches in hantavirus vaccine development. Expert Rev Vaccines 8:67–76

    Article  PubMed  Google Scholar 

  19. Meissner JD, Rowe JE, Borucki MK, St Jeor SC (2002) Complete nucleotide sequence of a Chilean hantavirus. Virus Res 89:131–143

    Article  PubMed  CAS  Google Scholar 

  20. Moss B, Elroy-Stein O, Mizukami T, Alexander WA, Fuerst TR (1990) Product review. New mammalian expression vectors. Nature 348:91–92

    Article  PubMed  CAS  Google Scholar 

  21. Mühlberger E, Weik M, Volchkov VE, Klenk HD, Becker S (1999) Comparison of the transcription and replication strategies of marburg virus and Ebola virus by using artificial replication systems. J Virol 73:2333–2342

    PubMed  Google Scholar 

  22. Nichol ST, Elliot RM, Goldbach R, Plyusnin A, Beaty BJ, Schmaljohn CS, Tesh RB (2005) Bunyaviridae. In: Fauquet CM, Mayo MA, Manilfoff J, Desselberger U, Ball LA (eds) Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Academic Press, San Diego, pp 695–716

    Google Scholar 

  23. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  PubMed  CAS  Google Scholar 

  24. Plyusnin A, Kukkonen SK, Plyusnina A, Vapalahti O, Vaheri A (2002) Transfection-mediated generation of functionally competent Tula hantavirus with recombinant S RNA segment. EMBO J 21:1497–1503

    Article  PubMed  CAS  Google Scholar 

  25. Saijo M, Qing T, Niikura M, Maeda A, Ikegami T, Sakai K, Prehaud C, Kurane I, Morikawa S (2002) Immunofluorescence technique using HeLa cells expressing recombinant nucleoprotein for detection of immunoglobulin G antibodies to Crimean-Congo hemorrhagic fever virus. J Clin Microbiol 40:372–375

    Article  PubMed  CAS  Google Scholar 

  26. Schmaljohn CS, Nichol ST (2007) Bunyaviridae. In: Knipe DM, Howley PA (eds) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, pp 1742–1789

    Google Scholar 

  27. Spiropoulou CF, Morzunov S, Feldmann H, Sanchez A, Peters CJ, Nichol ST (1994) Genome structure and variability of a virus causing hantavirus pulmonary syndrome. Virology 200:715–723

    Article  PubMed  CAS  Google Scholar 

  28. Vera-Otarola J, Solis L, Soto-Rifo R, Ricci EP, Pino K, Tischler ND, Ohlmann T, Darlix JL, López-Lastra M (2012) The Andes Hantavirus NSs Protein Is Expressed from the Viral Small mRNA by a Leaky Scanning Mechanism. J Virol 86:2176–2187

    Article  PubMed  CAS  Google Scholar 

  29. Weber F, Dunn EF, Bridgen A, Elliott RM (2001) The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. Virology 281:67–74

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Y, Li XH, Jiang H, Huang CX, Wang PZ, Mou DL, Sun L, Xu Z, Wei X, Bai XF (2008) Expression of L protein of Hantaan virus 84FLi strain and its application for recovery of minigenomes. APMIS 116:1089–1096

    Article  PubMed  CAS  Google Scholar 

  31. Zobel A, Neumann G, Hobom G (1993) RNA polymerase I catalysed transcription of insert viral cDNA. Nucleic Acids Res 21:3607–3614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work funded by the National Microbiology Laboratory of the Public Health Agency of Canada. The work was part of the Ph.D. thesis of KSB. Thank you to Dr. Connie Schmaljohn, U.S Army Medical Research Institute of Infectious Diseases, Ft. Detrick, MD for providing the Andes virus, strain Chile 9717869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Feldmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, K.S., Ebihara, H. & Feldmann, H. Development of a minigenome system for Andes virus, a New World hantavirus. Arch Virol 157, 2227–2233 (2012). https://doi.org/10.1007/s00705-012-1401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1401-0

Keywords

Navigation