Skip to main content

Advertisement

Log in

The 7-transmembrane protein homologue UL78 of the human cytomegalovirus forms oligomers and traffics between the plasma membrane and different intracellular compartments

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The human cytomegalovirus (HCMV) UL78 ORF is considered to encode an orphan 7-transmembrane receptor. However, until now, the UL78 protein (pUL78) has not been characterized. Here, we have investigated the expression of pUL78 and found it mainly associated with the endoplasmic reticulum. However, we provide evidence that pUL78 is also localized on the cell surface from where it is quickly endocytosed. Colocalization with adaptin and EEA-1 implies that at least a small amount of pUL78 is transported to the trans Golgi network and early endosomes. Using a bimolecular fluorescence complementation assay and co-immunoprecipitation experiments, we were able to find homomeric and heteromeric structure formations of pUL78 and the US28 protein, respectively. However, the absence of pUL78 had no effect on the accumulation of inositol phosphate triggered by the US28 protein. In summary, our results suggest that the UL78 protein of HCMV traffics between the cell surface and cytoplasm, from where it might be recycled via early endosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Reference

  1. Reyburn H, Mandelboim O, Valés-Gómez M, Davis DM, Pazmany L, Strominger JL (1997) The class I MHC homologue of human cytomegalovirus inhibits attack by natural killer cells. Nature 386:514–517

    Article  PubMed  CAS  Google Scholar 

  2. Akter P, Cunningham C, McSharry BP, Dolan A, Addison C, Dargan DJ, Hassan-Walker AF, Emery VC, Griffiths PD, Wilkinson GW, Davison AJ (2003) Two novel spliced genes in human cytomegalovirus. J Gen Virol 84:1117–1122

    Article  PubMed  CAS  Google Scholar 

  3. Penfold ME, Dairaghi DJ, Duke GM, Saederup N, Mocarski ES, Kemble GW, Schall TJ (1999) Cytomegalovirus encodes a potent alpha chemokine. Proc Natl Acad Sci USA 96:9839–9844

    Article  PubMed  CAS  Google Scholar 

  4. Chee MS, Satchwell SC, Preddie E, Weston KM, Barrell BG (1990) Human cytomegalovirus encodes three G protein-coupled receptor homologues. Nature 344:774–777

    Article  PubMed  CAS  Google Scholar 

  5. Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, Efstathiou S, Craxton M, Macaulay HA (1995) The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution. Virology 209:29–51

    Article  PubMed  CAS  Google Scholar 

  6. Bodaghi B, Jones TR, Zipeto D, Vita C, Sun L, Laurent L, Arenzana-Seisdedos F, Virelizier J-L, Michelson S (1998) Chemokine sequestration by viral chemoreceptors as a novel viral escape strategy: withdrawal of chemokines from the environment of cytomegalovirus-infected cells. J Exp Med 188:855–866

    Article  PubMed  CAS  Google Scholar 

  7. Pleskoff O, Treboute C, Alizon M (1998) The cytomegalovirus-encoded chemokine receptor US28 can enhance cell-cell fusion mediated by different viral proteins. J Virol 72:6389–6397

    PubMed  CAS  Google Scholar 

  8. Maussang D, Verijl D, van Walsum M, Leurs R, Holl J, Pleskoff O, Michel D, van Dongen GAMS, Smit MJ (2006) Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc Natl Acad Sci USA 103:13068–13073

    Article  PubMed  CAS  Google Scholar 

  9. Maussang D, Vischer HF, Schreiber A, Michel D, Smit MJ (2009) Pharmacological and biochemical characterization of human cytomegalovirus-encoded G protein-coupled receptors. Methods Enzymol 460:151–171

    Article  PubMed  CAS  Google Scholar 

  10. Slinger E, Maussang D, Schreiber A, Siderius M, Rahbar A, Fraile-Ramos A, Lira SA, Soderberg-Naucler C, Smit MJ (2010) HCMV-encoded chemokine receptor US28 mediates proliferative signaling through the IL-6-STAT3 axis. Sci Signal 3:ra58

    Article  PubMed  Google Scholar 

  11. Bongers G, Maussang D, Muniz LR, Noriega VM, Fraile-Ramos A, Barker N, Marchesi F, Thirunarayanan N, Vischer HF, Qin L, Mayer L, Harpaz N, Leurs R, Furtado GC, Clevers H, Tortorella D, Smit MJ, Lira SA (2010) The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. J Clin Invest 120:3969–3978

    Article  PubMed  CAS  Google Scholar 

  12. Casarosa P, Bakker RA, Verzijl D, Navis M, Timmerman H, Leurs R, Smit MJ (2001) Constitutive signaling of the human cytomegalovirus-encoded chemokine receptor US28. J Biol Chem 276:1133–1137

    Article  PubMed  CAS  Google Scholar 

  13. Fraile-Ramos A, Kohout TA, Waldhoer M, Marsh M (2003) Endocytosis of the viral chemokine receptor US28 does not require beta-arrestins but is dependent on the clathrin-mediated pathway. Traffic 4:243–253

    Article  PubMed  CAS  Google Scholar 

  14. Mokros T, Rehm A, Droese J, Oppermann M, Lipp M, Hopken UE (2002) Surface expression and endocytosis of the human cytomegalovirus-encoded chemokine receptor US28 is regulated by agonist-independent phosphorylation. J Biol Chem 277:45122–45128

    Article  PubMed  CAS  Google Scholar 

  15. Fraile-Ramos A, Pelchen-Matthews A, Kledal TN, Browne H, Schwartz TW, Marsh M (2002) Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 3:218–232

    Article  PubMed  CAS  Google Scholar 

  16. Michel D, Milotic I, Wagner M, Vaida B, Holl J, Ansorge R, Mertens T (2005) The human cytomegalovirus UL78 gene is highly conserved among clinical isolates, but is dispensable for replication in fibroblasts and a renal artery organ-culture system. J Gen Virol 86:297–306

    Article  PubMed  CAS  Google Scholar 

  17. Beisser PS, Grauls G, Bruggeman CA, Vink C (1999) Deletion of the R78 G protein-coupled receptor gene from rat cytomegalovirus results in an attenuated, syncytium-inducing mutant strain. J Virol 73:7218–7230

    PubMed  CAS  Google Scholar 

  18. Sharp EL, Davis-Poynter NJ, Farrell HE (2009) Analysis of the subcellular trafficking properties of murine cytomegalovirus M78, a 7 transmembrane receptor homologue. J Gen Virol 90:59–68

    Article  PubMed  CAS  Google Scholar 

  19. Beisser PS, Vink C, Van Dam JG, Grauls G, Vanherle SJV, Bruggeman CA (1998) The R33 G protein-coupled receptor gene of rat cytomegalovirus plays an essential role in the pathogenesis of viral infection. J Virol 72:2352–2363

    PubMed  CAS  Google Scholar 

  20. Oliveira SA, Shenk TE (2001) Murine cytomegalovirus M78 protein, a G protein-coupled receptor homologue, is a constituent of the virion and facilitates accumulation of immediate-early viral mRNA. Proc Natl Acad Sci USA 98:3237–3242

    Article  PubMed  CAS  Google Scholar 

  21. Kaptein SJ, Beisser PS, Gruijthuijsen YK, Savelkouls KG, van Cleef KW, Beuken E, Grauls GE, Bruggeman CA, Vink C (2003) The rat cytomegalovirus R78 G protein-coupled receptor gene is required for production of infectious virus in the spleen. J Gen Virol 84:2517–2530

    Article  PubMed  CAS  Google Scholar 

  22. Michel D, Pavic I, Zimmermann A, Haupt E, Wunderlich K, Heuschmid M, Mertens Th (1996) The UL97 gene product of the human cytomegalovirus is an early-late protein with a nuclear localization but is not a nucleoside kinase. J Virol 70:6340–6347

    PubMed  CAS  Google Scholar 

  23. Michel D, Schaarschmidt P, Wunderlich K, Heuschmid M, Simoncini L, Muhlberger D, Zimmermann A, Pavic I, Mertens T (1998) Functional regions of the human cytomegalovirus protein pUL97 involved in nuclear localization and phosphorylation of ganciclovir and pUL97 itself. J Gen Virol 79:2105–2112

    PubMed  CAS  Google Scholar 

  24. Tischer BK, von Einem J, Kaufer B, Osterrieder N (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. BioTechniques 40:191–197

    Article  PubMed  CAS  Google Scholar 

  25. Chevillotte M, Schubert A, Mertens Th, von Einem J (2009) Fluorescence-based assay for phenotypic characterization of human cytomegalovirus polymerase mutations regarding drug susceptibility viral replicative fitness. Antimicrob Agents Chemother 53:3752–3761

    Article  PubMed  CAS  Google Scholar 

  26. Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, Hengel H, Koszinowski U, Brune W, Adler B (2008) Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89:359–368

    Article  PubMed  CAS  Google Scholar 

  27. Borst E-M, Hahn G, Koszinowski UH, Messerle M (1999) Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in escherichia coli: a new approach for construction of HCMV mutants. J Virol 73:8320–8329

    PubMed  CAS  Google Scholar 

  28. Casarosa P, Gruijthuijsen YK, Michel D, Beisser PS, Holl J, Fitzsimons CP, Verzijl D, Bruggeman CA, Mertens T, Leurs R, Vink C, Smit MJ (2003) Constitutive signaling of the human cytomegalovirus-encoded receptor UL33 differs from that of its rat cytomegalovirus homolog R33 by promiscuous activation of G proteins of the Gq, Gi, and Gs classes. J Biol Chem 278:50010–50023

    Article  PubMed  CAS  Google Scholar 

  29. Wagner M, Michel D, Schaarschmidt P, Vaida B, Jonjic S, Messerle M, Mertens T, Koszinowski U (2000) Comparison between human cytomegalovirus pUL97 and murine cytomegalovirus (MCMV) pM97 expressed by MCMV and vaccinia virus: pM97 does not confer ganciclovir sensitivity. J Virol 74:10729–10736

    Article  PubMed  CAS  Google Scholar 

  30. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  31. Nyfeler B, Michnick SW, Hauri HP (2005) Capturing protein interactions in the secretory pathway of living cells. Proc Natl Acad Sci USA 102:6350–6355

    Article  PubMed  CAS  Google Scholar 

  32. Walliser C, Retlich M, Harris R, Everett KL, Josephs MB, Vatter P, Esposito D, Driscoll PC, Katan M, Gierschik P, Bunney TD (2008) rac regulates its effector phospholipase Cgamma2 through interaction with a split pleckstrin homology domain. J Biol Chem 283:30351–30362

    Article  PubMed  CAS  Google Scholar 

  33. Piechulek T, Rehlen T, Walliser C, Vatter P, Moepps B, Gierschik P (2005) Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases. J Biol Chem 280:38923–38931

    Article  PubMed  CAS  Google Scholar 

  34. Camps M, Hou CF, Jakobs KH, Gierschik P (1990) Guanosine 5′-[gamma-thio]triphosphate-stimulated hydrolysis of phosphatidylinositol 4,5-bisphosphate in HL-60 granulocytes. Evidence that the guanine nucleotide acts by relieving phospholipase C from an inhibitory constraint. Biochem J 271:743–748

    PubMed  CAS  Google Scholar 

  35. Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T (2006) Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10:839–850

    Article  PubMed  CAS  Google Scholar 

  36. Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11:1–20

    Article  PubMed  CAS  Google Scholar 

  37. Vink C, Smit MJ, Leurs R, Bruggeman CA (2001) The role of cytomegalovirus-encoded homologs of G protein-coupled receptors and chemokines in manipulation of and evasion from the immune system. J Clin Virol 23:43–55

    Article  PubMed  CAS  Google Scholar 

  38. Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, Mattison K, Altschuler Y, Nelson JA (1999) The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520

    Article  PubMed  CAS  Google Scholar 

  39. Michelson S, Dal Monte P, Zipeto D, Bodaghi B, Laurent L, Oberlin E, Arenzana-Seisdedos F, Virelizier J-L, Landini M-P (1997) Modulation of RANTES production by human cytomegalovirus infection of fibroblasts. J Virol 71:6495–6500

    PubMed  CAS  Google Scholar 

  40. Vieira J, Schall TJ, Corey L, Geballe AP (1998) Functional analysis of the human cytomegalovirus US28 gene by insertion mutagenesis with the green fluorescent protein gene. J Virol 72:8158–8165

    PubMed  CAS  Google Scholar 

  41. Fraile-Ramos A, Kledal TN, Pelchen-Matthews A, Bowers K, Schwartz TW, Marsh M (2001) The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol Biol Cell 12:1737–1749

    PubMed  CAS  Google Scholar 

  42. Mousavi SA, Malerod L, Berg T, Kjeken R (2004) Clathrin-dependent endocytosis. Biochem J 377:1–16

    Article  PubMed  CAS  Google Scholar 

  43. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    Article  PubMed  CAS  Google Scholar 

  44. Calebiro D, Nikolaev VO, Persani L, Lohse MJ (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228

    Article  PubMed  CAS  Google Scholar 

  45. Terrillon S, Durroux T, Mouillac B, Breit A, Ayoub MA, Taulan M, Jockers R, Barberis C, Bouvier M (2003) Oxytocin and vasopressin V1a and V2 receptors form constitutive homo- and heterodimers during biosynthesis. Mol Endocrinol 17:677–691

    Article  PubMed  CAS  Google Scholar 

  46. Nijmeijer S, Leurs R, Smit MJ, Vischer HF (2010) The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Galphai proteins, and constitutively impairs CXCR4 functioning. J Biol Chem 285:29632–29641

    Article  PubMed  CAS  Google Scholar 

  47. Levoye A, Dam J, Ayoub MA, Guillaume JL, Jockers R (2006) Do orphan G-protein-coupled receptors have ligand-independent functions? New insights from receptor heterodimers. EMBO Rep 7:1094–1098

    Article  PubMed  CAS  Google Scholar 

  48. Tschische P, Tadagaki K, Kamal M, Jockers R, Waldhoer M (2011) Heteromerization of human cytomegalovirus encoded chemokine receptors. Biochem Pharmacol 82:610–619

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Foundation Recherche Médicale (“Equipe FRM”, RJ), the Association pour la Recherche sur le Cancer (ARC, no 5051), the Institut National de la Santé et de la Recherche Médicale (INSERM) and the Centre National de la Recherche Scientifique (CNRS). KT was supported by a research fellowship of the Université Paris Descartes (France). The excellent technical assistance of Ramona Ansorge, Manuela Michel, and Norbert Zanker is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Detlef Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, S., Arnold, F., Wu, Z. et al. The 7-transmembrane protein homologue UL78 of the human cytomegalovirus forms oligomers and traffics between the plasma membrane and different intracellular compartments. Arch Virol 157, 935–949 (2012). https://doi.org/10.1007/s00705-012-1246-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1246-6

Keywords

Navigation