Skip to main content

Advertisement

Log in

Analysis of base and codon usage by rubella virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Rubella virus (RUBV), a small, plus-strand RNA virus that is an important human pathogen, has the unique feature that the GC content of its genome (70%) is the highest (by 20%) among RNA viruses. To determine the effect of this GC content on genomic evolution, base and codon usage were analyzed across viruses from eight diverse genotypes of RUBV. Despite differences in frequency of codon use, the favored codons in the RUBV genome matched those in the human genome for 18 of the 20 amino acids, indicating adaptation to the host. Although usage patterns were conserved in corresponding genes in the diverse genotypes, within-genome comparison revealed that both base and codon usages varied regionally, particularly in the hypervariable region (HVR) of the P150 replicase gene. While directional mutation pressure was predominant in determining base and codon usage within most of the genome (with the strongest tendency being towards C’s at third codon positions), natural selection was predominant in the HVR region. The GC content of this region was the highest in the genome (>80%), and it was not clear if selection at the nucleotide level accompanied selection at the amino acid level. Dinucleotide frequency analysis of the RUBV genome revealed that TpA usage was lower than expected, similar to mammalian genes; however, CpG usage was not suppressed, and TpG usage was not enhanced, as is the case in mammalian genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adams MJ, Antoniw JF (2004) Codon usage bias amongst plant viruses. Arch Virol 149:113–135

    PubMed  CAS  Google Scholar 

  2. Akashi H, Kliman RM, Eyre-Walker A (1998) Mutation pressure, natural selection, and the evolution of base composition in Drosophila. Genetica 102–103:49–60

    Article  PubMed  Google Scholar 

  3. Andre S, Seed B, Eberle J, Schraut W, Bultmann A, Haas J (1998) Increased immune response elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usage. J Virol 72:1497–1503

    PubMed  CAS  Google Scholar 

  4. Barrett JW, Sun Y, Nazarian SH, Belsito TA, Brunetti CR, McFadden G (2006) Optimization of codon usage of poxvirus genes allows for improved transient expression in mammalian cells. Virus Genes 33:15–26

    Article  PubMed  CAS  Google Scholar 

  5. Baud D, Ponci F, Bobst M, De Grandi P, Nardelli-Haefliger D (2004) Improved efficiency of a Salmonella-based vaccine against human papillomavirus type 16 virus-like particles achieved by using a codon-optimized version of L1. J Virol 78:12901–12909

    Article  PubMed  CAS  Google Scholar 

  6. Berkhout B, van Hemert FJ (1994) The unusual nucleotide content of the HIV RNA genome results in a biased amino acid composition of HIV proteins. Nucleic Acids Res 22:1705–1711

    Article  PubMed  CAS  Google Scholar 

  7. Berkhout B, Grigoriev A, Bakker M, Lukashov VV (2002) Codon and amino acid usage in retroviral genomes is consistent with virus-specific nucleotide pressure. AIDS Res Hum Retroviruses 18:133–141

    Article  PubMed  CAS  Google Scholar 

  8. Bernardi G (1995) The human genome: organization and evolutionary history. Annu Rev Genet 29:445–476

    Article  PubMed  CAS  Google Scholar 

  9. Beutler E, Gelbart T, Han JH, Koziol JA, Beutler B (1989) Evolution of the genome and the genetic code: selection at the dinucleotide level by methylation and polyribonucleotide cleavage. Proc Natl Acad Sci USA 86:192–196

    Article  PubMed  CAS  Google Scholar 

  10. Bierne N, Eyre-Walker A (2003) The problem of counting sites in the estimation of the synonymous and nonsynonymous substitution rates: implications for the correlation between the synonymous substitution rate and codon usage bias. Genetics 165:1587–1597

    PubMed  Google Scholar 

  11. Bosch ML, Andeweg AC, Schipper R, Kenter M (1994) Insertion of N-linked glycosylation sites in the variable regions of the human immunodeficiency virus type 1 surface glycoprotein through AAT triplet reiteration. J Virol 68:7566–7569

    PubMed  CAS  Google Scholar 

  12. Breslauer KJ, Frank R, Blocker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83:3746–3750

    Article  PubMed  CAS  Google Scholar 

  13. Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, Kew O (2006) Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 80:3259–3272

    Article  PubMed  CAS  Google Scholar 

  14. Comeron JM, Aguade M (1998) An evaluation of measures of synonymous codon usage bias. J Mol Evol 47:268–274

    Article  PubMed  CAS  Google Scholar 

  15. Comeron JM, Kreitman M, Aguade M (1999) Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 151:239–249

    PubMed  CAS  Google Scholar 

  16. Delcourt SG, Blake RD (1991) Stacking energies in DNA. J Biol Chem 266:15160–15169

    PubMed  CAS  Google Scholar 

  17. Frey TK (1994) Molecular biology of rubella virus. Adv Virus Res 44:69–160

    Article  PubMed  CAS  Google Scholar 

  18. Grantham R, Gautier C, Gouy M, Mercier R, Pave A (1980) Codon catalog usage and the genome hypothesis. Nucleic Acids Res 8:r49–r62

    PubMed  CAS  Google Scholar 

  19. Gu W, Zhou T, Ma J, Sun X, Lu Z (2004) Analysis of synonymous codon usage in SARS Coronavirus and other viruses in the Nidovirales. Virus Res 101:155–161

    Article  PubMed  CAS  Google Scholar 

  20. Haas J, Park EC, Seed B (1996) Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 6:315–324

    Article  PubMed  CAS  Google Scholar 

  21. Henikoff S, Henikoff JG (1994) Position-based sequence weights. J Mol Biol 243:574–578

    Article  PubMed  CAS  Google Scholar 

  22. Hofmann J, Renz M, Meyer S, von Haeseler A, Liebert UG (2003) Phylogenetic analysis of rubella virus including new genotype I isolates. Virus Res 96:123–128

    Article  PubMed  CAS  Google Scholar 

  23. Hughes S, Zelus D, Mouchiroud D (1999) Warm-blooded isochore structure in Nile crocodile and turtle. Mol Biol Evol 16:1521–1527

    Article  PubMed  CAS  Google Scholar 

  24. Jenkins GM, Rambaut A, Pybus OG, Holmes EC (2002) Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54:156–165

    Article  PubMed  CAS  Google Scholar 

  25. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92:1–7

    Article  PubMed  CAS  Google Scholar 

  26. Karlin S, Doerfler W, Cardon LR (1994) Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J Virol 68:2889–2897

    PubMed  CAS  Google Scholar 

  27. Karlin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 11:283–290

    Article  PubMed  CAS  Google Scholar 

  28. Kay BK, Williamson MP, Sudol M (2000) The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. Faseb J 14:231–241

    PubMed  CAS  Google Scholar 

  29. Keating CP, Hill MK, Hawkes DJ, Smyth RP, Isel C, Le SY, Palmenberg AC, Marshall JA, Marquet R, Nabel GJ, Mak J (2009) The A-rich RNA sequences of HIV-1 pol are important for the synthesis of viral cDNA. Nucleic Acids Res 37:945–956

    Article  PubMed  CAS  Google Scholar 

  30. Khrustalev VV, Barkovsky EV (2011) Unusual nucleotide content of Rubella virus genome as a consequence of biased RNA-editing: comparison with Alphaviruses. Int J Bioinform Res Appl 7:82–100

    Article  PubMed  CAS  Google Scholar 

  31. Kliman RM, Bernal CA (2005) Unusual usage of AGG and TTG codons in humans and their viruses. Gene 352:92–99

    Article  PubMed  CAS  Google Scholar 

  32. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004) Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103:1433–1437

    Article  PubMed  CAS  Google Scholar 

  33. Kundu TK, Rao MR (1999) CpG islands in chromatin organization and gene expression. J Biochem 125:217–222

    Article  PubMed  CAS  Google Scholar 

  34. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  35. Levin DB, Whittome B (2000) Codon usage in nucleopolyhedroviruses. J General Virol 81:2313–2325

    CAS  Google Scholar 

  36. Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11:605–612

    PubMed  CAS  Google Scholar 

  37. Mansky LM, Temin HM (1995) Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 69:5087–5094

    PubMed  CAS  Google Scholar 

  38. McEwan CE, Gatherer D, McEwan NR (1998) Nitrogen-fixing aerobic bacteria have higher genomic GC content than non-fixing species within the same genus. Hereditas 128:173–178

    Article  PubMed  CAS  Google Scholar 

  39. Menendez-Arias L (2002) Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. Prog Nucleic Acid Res Mol Biol 71:91–147

    Article  PubMed  CAS  Google Scholar 

  40. Mooers AO, Holmes EC (2000) The evolution of base composition and phylogenetic inference. Trends Ecol Evol 15:365–369

    Article  PubMed  Google Scholar 

  41. Mueller S, Papamichail D, Coleman JR, Skiena S, Wimmer E (2006) Reduction of the rate of poliovirus protein synthesis through large-scale codon deoptimization causes attenuation of viral virulence by lowering specific infectivity. J Virol 80:9687–9696

    Article  PubMed  CAS  Google Scholar 

  42. Pan A, Dutta C, Das J (1998) Codon usage in highly expressed genes of Haemophillus influenzae and Mycobacterium tuberculosis: translational selection versus mutational bias. Gene 215:405–413

    Article  PubMed  CAS  Google Scholar 

  43. Powell JR, Moriyama EN (1997) Evolution of codon usage bias in Drosophila. Proc Natl Acad Sci USA 94:7784–7790

    Article  PubMed  CAS  Google Scholar 

  44. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics (Oxford, England) 18:502–504

  45. Shackelton LA, Parrish CR, Holmes EC (2006) Evolutionary basis of codon usage and nucleotide composition bias in vertebrate DNA viruses. J Mol Evol 62:551–563

    Article  PubMed  CAS  Google Scholar 

  46. Sharp PM, Li WH (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38

    Article  PubMed  CAS  Google Scholar 

  47. Sharp PM, Li WH (1987) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230

    PubMed  CAS  Google Scholar 

  48. Sharp PM, Matassi G (1994) Codon usage and genome evolution. Curr Opin Genet Dev 4:851–860

    Article  PubMed  CAS  Google Scholar 

  49. Singer CE, Ames BN (1970) Sunlight ultraviolet and bacterial DNA base ratios. Science 170:822–825

    Article  PubMed  CAS  Google Scholar 

  50. Smith DW (1996) Problems of translating heterologous genes in expression systems: the role of tRNA. Biotechnol Prog 12:417–422

    Article  PubMed  CAS  Google Scholar 

  51. Tzeng WP, Frey TK (2009) Functional replacement of a domain in the rubella virus p150 replicase protein by the virus capsid protein. J Virol 83:3549–3555

    Article  PubMed  CAS  Google Scholar 

  52. Urrutia AO, Hurst LD (2001) Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics 159:1191–1199

    PubMed  CAS  Google Scholar 

  53. WHO (2007) Update of standard nomenclature for wild-type rubella viruses, 2007. Wkly Epidemiol Rec 82:216–222

    Google Scholar 

  54. WHO (2007) Update of standard nomenclature for wild-type rubella viruses, 2007. Releve epidemiologique hebdomadaire/Section d’hygiene du Secretariat de la Societe des Nations = Weekly epidemiological record/Health Section of the Secretariat of the League of Nations 82:216–222

  55. Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29

    Article  PubMed  CAS  Google Scholar 

  56. Xia X (2000) Factors Affecting Codon Frequencies. Data Analysis in Molecular Biology and Evolution. Kluwer Academic Publishers, pp 59–105

  57. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  PubMed  CAS  Google Scholar 

  58. Zhao KN, Liu WJ, Frazer IH (2003) Codon usage bias and A + T content variation in human papillomavirus genomes. Virus Res 98:95–104

    Article  PubMed  CAS  Google Scholar 

  59. Zheng M, Klinman DM, Gierynska M, Rouse BT (2002) DNA containing CpG motifs induces angiogenesis. Proc Natl Acad Sci USA 99:8944–8949

    PubMed  CAS  Google Scholar 

  60. Zhou T, Gu W, Ma J, Sun X, Lu Z (2005) Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. Bio Syst 81:77–86

    CAS  Google Scholar 

  61. Zhou Y, Ushijima H, Frey TK (2007) Genomic analysis of diverse rubella virus genotypes. J General Virol 88:932–941

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from NIH (AI21389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teryl K. Frey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Chen, X., Ushijima, H. et al. Analysis of base and codon usage by rubella virus. Arch Virol 157, 889–899 (2012). https://doi.org/10.1007/s00705-012-1243-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1243-9

Keywords

Navigation