Skip to main content

Advertisement

Log in

Characterization of Epstein-Barr virus type 1 nuclear antigen 3C sequence patterns of nasopharyngeal and gastric carcinomas in northern China

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Epstein-Barr virus nuclear antigen protein 3C (EBNA3C) is a 992-amino-acid protein that has been shown to play a complex regulatory role in the transcription of viral and cellular genes. In this study, we successfully amplified 26 Epstein-Barr virus (EBV)-associated gastric carcinomas (EBVaGCs), 50 nasopharyngeal carcinomas (NPCs) and 27 throat washing (TW) samples from healthy donors. Based on a phylogenetic tree, the samples could be divided into three patterns. 3C-6 was the predominant subtype in northern China, and the variations between the strains sequenced in our study and those from southern China and Japan were similar, but differences were also identified. The distribution of EBNA3C subtypes among EBVaGCs, NPCs and healthy donors was not significantly different. These data suggest that EBNA3C gene variations are geographically restricted rather than tumor-specific polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bonnet M, Guinebretiere JM, Kremmer E, Grunewald V, Benhamou E, Contesso G, Joab I (1999) Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst 91(16):1376–1381

    Article  PubMed  CAS  Google Scholar 

  2. Imai S, Nishikawa J, Takada K (1998) Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J Virol 72(5):4371–4378

    PubMed  CAS  Google Scholar 

  3. Brickell PM, Patel MS (1995) Epstein-Barr virus replication studies and their application to vector design. Mol Biotechnol 3(3):199–205. doi:10.1007/BF02789330

    Article  PubMed  CAS  Google Scholar 

  4. Yanai H, Takada K, Shimizu N, Mizugaki Y, Tada M, Okita K (1997) Epstein-Barr virus infection in non-carcinomatous gastric epithelium. J Pathol 183(3):293–298. doi:10.1002/(SICI)1096-9896(199711)183:3<293:AID-PATH937>3.0.CO;2-C

    Article  PubMed  CAS  Google Scholar 

  5. Smith P (2001) Epstein-Barr virus complementary strand transcripts (CSTs/BARTs) and cancer. Semin Cancer Biol 11(6):469–476. doi:10.1006/scbi.2001.0414

    Article  PubMed  CAS  Google Scholar 

  6. Cohen JI, Wang F, Mannick J, Kieff E (1989) Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proc Natl Acad Sci USA 86(23):9558–9562

    Article  PubMed  CAS  Google Scholar 

  7. Tomkinson B, Robertson E, Kieff E (1993) Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation. J Virol 67(4):2014–2025

    PubMed  CAS  Google Scholar 

  8. Hammerschmidt W, Sugden B, Baichwal VR (1989) The transforming domain alone of the latent membrane protein of Epstein-Barr virus is toxic to cells when expressed at high levels. J Virol 63(6):2469–2475

    PubMed  CAS  Google Scholar 

  9. Knight JS, Lan K, Subramanian C, Robertson ES (2003) Epstein-Barr virus nuclear antigen 3C recruits histone deacetylase activity and associates with the corepressors mSin3A and NCoR in human B-cell lines. J Virol 77(7):4261–4272

    Article  PubMed  CAS  Google Scholar 

  10. Rosendorff A, Illanes D, David G, Lin J, Kieff E, Johannsen E (2004) EBNA3C coactivation with EBNA2 requires a SUMO homology domain. J Virol 78(1):367–377

    Article  PubMed  CAS  Google Scholar 

  11. Subramanian C, Cotter MA 2nd, Robertson ES (2001) Epstein-Barr virus nuclear protein EBNA-3C interacts with the human metastatic suppressor Nm23-H1: a molecular link to cancer metastasis. Nat Med 7(3):350–355. doi:10.1038/85499

    Article  PubMed  CAS  Google Scholar 

  12. Marshall D, Sample C (1995) Epstein-Barr virus nuclear antigen 3C is a transcriptional regulator. J Virol 69(6):3624–3630

    PubMed  CAS  Google Scholar 

  13. Robertson ES, Grossman S, Johannsen E, Miller C, Lin J, Tomkinson B, Kieff E (1995) Epstein-Barr virus nuclear protein 3C modulates transcription through interaction with the sequence-specific DNA-binding protein J kappa. J Virol 69(5):3108–3116

    PubMed  CAS  Google Scholar 

  14. Allday MJ, Crawford DH, Thomas JA (1993) Epstein-Barr virus (EBV) nuclear antigen 6 induces expression of the EBV latent membrane protein and an activated phenotype in Raji cells. J Gen Virol 74(Pt 3):361–369

    Article  PubMed  CAS  Google Scholar 

  15. Petti L, Sample J, Wang F, Kieff E (1988) A fifth Epstein-Barr virus nuclear protein (EBNA3C) is expressed in latently infected growth-transformed lymphocytes. J Virol 62(4):1330–1338

    PubMed  CAS  Google Scholar 

  16. Wang F, Gregory C, Sample C, Rowe M, Liebowitz D, Murray R, Rickinson A, Kieff E (1990) Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol 64(5):2309–2318

    PubMed  CAS  Google Scholar 

  17. Bohnsack JF, Cooper NR (1988) CR2 ligands modulate human B cell activation. J Immunol 141(8):2569–2576

    PubMed  CAS  Google Scholar 

  18. Allday MJ, Farrell PJ (1994) Epstein-Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol 68(6):3491–3498

    PubMed  CAS  Google Scholar 

  19. Le Roux A, Kerdiles B, Walls D, Dedieu JF, Perricaudet M (1994) The Epstein-Barr virus determined nuclear antigens EBNA-3A, -3B, and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205(2):596–602. doi:10.1006/viro.1994.1687

    Article  PubMed  Google Scholar 

  20. Krauer KG, Kienzle N, Young DB, Sculley TB (1996) Epstein-Barr nuclear antigen-3 and -4 interact with RBP-2 N, a major isoform of RBP-J kappa in B lymphocytes. Virology 226(2):346–353. doi:10.1006/viro.1996.0662

    Article  PubMed  CAS  Google Scholar 

  21. Robertson ES, Lin J, Kieff E (1996) The amino-terminal domains of Epstein-Barr virus nuclear proteins 3A, 3B, and 3C interact with RBPJ(kappa). J Virol 70(5):3068–3074

    PubMed  CAS  Google Scholar 

  22. Waltzer L, Perricaudet M, Sergeant A, Manet E (1996) Epstein-Barr virus EBNA3A and EBNA3C proteins both repress RBP-J kappa-EBNA2-activated transcription by inhibiting the binding of RBP-J kappa to DNA. J Virol 70(9):5909–5915

    PubMed  CAS  Google Scholar 

  23. Zhao B, Marshall DR, Sample CE (1996) A conserved domain of the Epstein-Barr virus nuclear antigens 3A and 3C binds to a discrete domain of Jkappa. J Virol 70(7):4228–4236

    PubMed  CAS  Google Scholar 

  24. Radkov SA, Touitou R, Brehm A, Rowe M, West M, Kouzarides T, Allday MJ (1999) Epstein-Barr virus nuclear antigen 3C interacts with histone deacetylase to repress transcription. J Virol 73(7):5688–5697

    PubMed  CAS  Google Scholar 

  25. Touitou R, Hickabottom M, Parker G, Crook T, Allday MJ (2001) Physical and functional interactions between the corepressor CtBP and the Epstein-Barr virus nuclear antigen EBNA3C. J Virol 75(16):7749–7755. doi:10.1128/JVI.75.16.7749-7755.2001

    Article  PubMed  CAS  Google Scholar 

  26. West MJ, Webb HM, Sinclair AJ, Woolfson DN (2004) Biophysical and mutational analysis of the putative bZIP domain of Epstein-Barr virus EBNA 3C. J Virol 78(17):9431–9445. doi:10.1128/JVI.78.17.9431-9445.2004

    Article  PubMed  CAS  Google Scholar 

  27. Zhao B, Sample CE (2000) Epstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site. J Virol 74(11):5151–5160

    Article  PubMed  CAS  Google Scholar 

  28. Subramanian C, Knight JS, Robertson ES (2002) The Epstein Barr nuclear antigen EBNA3C regulates transcription, cell transformation and cell migration. Front Biosci 7:d704–d716

    Article  PubMed  CAS  Google Scholar 

  29. Tao Q, Yang J, Huang H, Swinnen LJ, Ambinder RF (2002) Conservation of Epstein-Barr virus cytotoxic T-cell epitopes in posttransplant lymphomas: implications for immune therapy. Am J Pathol 160(5):1839–1845. doi:10.1016/S0002-9440(10)61130-3

    Article  PubMed  CAS  Google Scholar 

  30. Khanna R, Burrows SR, Kurilla MG, Jacob CA, Misko IS, Sculley TB, Kieff E, Moss DJ (1992) Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176(1):169–176

    Article  PubMed  CAS  Google Scholar 

  31. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y, Srivastava DK, Bowman LC, Krance RA, Brenner MK, Heslop HE (1998) Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92(5):1549–1555

    PubMed  CAS  Google Scholar 

  32. Dawson CW, Eliopoulos AG, Blake SM, Barker R, Young LS (2000) Identification of functional differences between prototype Epstein-Barr virus-encoded LMP1 and a nasopharyngeal carcinoma-derived LMP1 in human epithelial cells. Virology 272(1):204–217. doi:10.1006/viro.2000.0344

    Article  PubMed  CAS  Google Scholar 

  33. Fielding CA, Sandvej K, Mehl A, Brennan P, Jones M, Rowe M (2001) Epstein-Barr virus LMP-1 natural sequence variants differ in their potential to activate cellular signaling pathways. J Virol 75(19):9129–9141. doi:10.1128/JVI.75.19.9129-9141.2001

    Article  PubMed  CAS  Google Scholar 

  34. Gutierrez MI, Raj A, Spangler G, Sharma A, Hussain A, Judde JG, Tsao SW, Yuen PW, Joab I, Magrath IT, Bhatia K (1997) Sequence variations in EBNA-1 may dictate restriction of tissue distribution of Epstein-Barr virus in normal and tumour cells. J Gen Virol 78(Pt 7):1663–1670

    PubMed  CAS  Google Scholar 

  35. Mai SJ, Ooka T, Li DJ, Zeng MS, Jiang RC, Yu XJ, Zhang RH, Chen SP, Zeng YX (2007) Functional advantage of NPC-related V-val subtype of Epstein-Barr virus nuclear antigen 1 compared with prototype in epithelial cell line. Oncol Rep 17(1):141–146

    PubMed  CAS  Google Scholar 

  36. Midgley RS, Bell AI, McGeoch DJ, Rickinson AB (2003) Latent gene sequencing reveals familial relationships among Chinese Epstein-Barr virus strains and evidence for positive selection of A11 epitope changes. J Virol 77(21):11517–11530

    Article  PubMed  CAS  Google Scholar 

  37. Sample J, Young L, Martin B, Chatman T, Kieff E, Rickinson A (1990) Epstein-Barr virus types 1 and 2 differ in their EBNA-3A, EBNA-3B, and EBNA-3C genes. J Virol 64(9):4084–4092

    PubMed  CAS  Google Scholar 

  38. Young LS, Yao QY, Rooney CM, Sculley TB, Moss DJ, Rupani H, Laux G, Bornkamm GW, Rickinson AB (1987) New type B isolates of Epstein-Barr virus from Burkitt’s lymphoma and from normal individuals in endemic areas. J Gen Virol 68(Pt 11):2853–2862

    Article  PubMed  CAS  Google Scholar 

  39. Zimber U, Adldinger HK, Lenoir GM, Vuillaume M, Knebel-Doeberitz MV, Laux G, Desgranges C, Wittmann P, Freese UK, Schneider U et al (1986) Geographical prevalence of two types of Epstein-Barr virus. Virology 154(1):56–66

    Article  PubMed  CAS  Google Scholar 

  40. Zhou XG, Sandvej K, Li PJ, Ji XL, Yan QH, Zhang XP, Da JP, Hamilton-Dutoit SJ (2001) Epstein–Barr virus gene polymorphisms in Chinese Hodgkin’s disease cases and healthy donors: identification of three distinct virus variants. J Gen Virol 82(Pt 5):1157–1167

    PubMed  CAS  Google Scholar 

  41. Cui Y, Wang Y, Liu X, Chao Y, Xing X, Zhao C, Liu C, Luo B (2011) Genotypic analysis of Epstein-Barr virus isolates associated with nasopharyngeal carcinoma in Northern China. Intervirology 54(3):131–138. doi:10.1159/000319632

    Article  PubMed  CAS  Google Scholar 

  42. Sugiura M, Imai S, Tokunaga M, Koizumi S, Uchizawa M, Okamoto K, Osato T (1996) Transcriptional analysis of Epstein-Barr virus gene expression in EBV-positive gastric carcinoma: unique viral latency in the tumour cells. Br J Cancer 74(4):625–631

    Article  PubMed  CAS  Google Scholar 

  43. Zeng MS, Li DJ, Liu QL, Song LB, Li MZ, Zhang RH, Yu XJ, Wang HM, Ernberg I, Zeng YX (2005) Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. J Virol 79(24):15323–15330. doi:10.1128/JVI.79.24.15323-15330.2005

    Article  PubMed  CAS  Google Scholar 

  44. Rickinson AB, Moss DJ (1997) Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 15:405–431. doi:10.1146/annurev.immunol.15.1.405

    Article  PubMed  CAS  Google Scholar 

  45. Sawada A, Croom-Carter D, Kondo O, Yasui M, Koyama-Sato M, Inoue M, Kawa K, Rickinson AB, Tierney RJ (2011) Epstein-Barr virus latent gene sequences as geographical markers of viral origin: unique EBNA3 gene signatures identify Japanese viruses as distinct members of the Asian virus family. J Gen Virol 92(Pt 5):1032–1043. doi:10.1099/vir.0.030023-0

    Article  PubMed  CAS  Google Scholar 

  46. Wang Y, Liu X, Xing X, Cui Y, Zhao C, Luo B (2010) Variations of Epstein-Barr virus nuclear antigen 1 gene in gastric carcinomas and nasopharyngeal carcinomas from Northern China. Virus Res 147(2):258–264. doi:10.1016/j.virusres.2009.11.010

    Article  PubMed  CAS  Google Scholar 

  47. Hu LF, Qiu QH, Fu SM, Sun D, Magnusson K, He B, Lindblom A, Ernberg I (2008) A genome-wide scan suggests a susceptibility locus on 5p 13 for nasopharyngeal carcinoma. Eur J Hum Genet 16(3):343–349. doi:10.1038/sj.ejhg.5201951

    Article  PubMed  CAS  Google Scholar 

  48. Xiong W, Zeng ZY, Xia JH, Xia K, Shen SR, Li XL, Hu DX, Tan C, Xiang JJ, Zhou J, Deng H, Fan SQ, Li WF, Wang R, Zhou M, Zhu SG, Lu HB, Qian J, Zhang BC, Wang JR, Ma J, Xiao BY, Huang H, Zhang QH, Zhou YH, Luo XM, Zhou HD, Yang YX, Dai HP, Feng GY, Pan Q, Wu LQ, He L, Li GY (2004) A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma. Cancer Res 64(6):1972–1974

    Article  PubMed  CAS  Google Scholar 

  49. Guo X, Johnson RC, Deng H, Liao J, Guan L, Nelson GW, Tang M, Zheng Y, de The G, O’Brien SJ, Winkler CA, Zeng Y (2009) Evaluation of nonviral risk factors for nasopharyngeal carcinoma in a high-risk population of Southern China. Int J Cancer 124(12):2942–2947. doi:10.1002/ijc.24293

    Article  PubMed  CAS  Google Scholar 

  50. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. doi:10.1038/nature05919

    Article  PubMed  CAS  Google Scholar 

  51. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A (2008) Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 82(3):696–711. doi:10.1016/j.ajhg.2008.01.008

    Article  PubMed  CAS  Google Scholar 

  52. Gorzer I, Niesters HG, Cornelissen JJ, Puchhammer-Stockl E (2006) Characterization of Epstein-Barr virus Type I variants based on linked polymorphism among EBNA3A, -3B, and -3C genes. Virus Res 118(1–2):105–114. doi:10.1016/j.virusres.2005.11.020

    Article  PubMed  Google Scholar 

  53. Subramanian C, Robertson ES (2002) The metastatic suppressor Nm23-H1 interacts with EBNA3C at sequences located between the glutamine- and proline-rich domains and can cooperate in activation of transcription. J Virol 76(17):8702–8709

    Article  PubMed  CAS  Google Scholar 

  54. Chinnadurai G (2002) CtBP, an unconventional transcriptional corepressor in development and oncogenesis. Mol Cell 9(2):213–224. pii:S1097276502004434

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant from National Natural Science Foundation of China (NSFC 30740068), the Natural Science Foundation of Shandong Province (Y2008C90) and Science and Technology of Qingdao City (08-2-3-7-hz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Wang, Y., Chao, Y. et al. Characterization of Epstein-Barr virus type 1 nuclear antigen 3C sequence patterns of nasopharyngeal and gastric carcinomas in northern China. Arch Virol 157, 845–853 (2012). https://doi.org/10.1007/s00705-012-1241-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1241-y

Keywords

Navigation