Skip to main content
Log in

Two genetically related begomoviruses causing tomato leaf curl disease in Togo and Nigeria differ in virulence and host range but do not require a betasatellite for induction of disease symptoms

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Tomato leaf curl disease (ToLCD) has emerged as a major constraint on tomato production in some parts of West Africa. In this study, begomoviruses associated with ToLCD in Togo and Nigeria were characterized, as well as a betasatellite associated with the disease in Togo. The genome organization of both viruses is typical of Old World monopartite begomoviruses. Sequence analysis revealed that the begomovirus from Togo is a variant of tomato leaf curl Kumasi virus (ToLCKuV) from Ghana, and it is designated ToLCKuV-[Togo:Pagouda:2006] (ToLCKuV-[TG:Pag:06]). The begomovirus from Nigeria has a recombinant genome, composed of sequences of ToLCKuV (major parent) and a cotton leaf curl Gezira virus (CLCuGV)-like virus, and possesses an unusual non-reiterated replication-associated protein (Rep) binding site. Moreover, because the sequence has <89% identity with those of previously characterized begomoviruses, it is a new species and is designated tomato leaf curl Nigeria virus-[Nigeria:Odogbo:2006] (ToLCNGV-[NG:Odo:06]). The cloned DNAs of ToLCKuV-TG and ToLCNGV were infectious and induced leaf curl symptoms in tomato plants, but ToLCNGV was comparatively more virulent. Both viruses also induced stunted growth and leaf curl symptoms in other solanaceous species (various Nicotiana spp. and Datura stramonium), whereas ToLCNGV but not ToLCKuV-TG induced symptoms in common bean plants. The betasatellite associated with ToLCD in Togo is genetically distinct (i.e., <78% nucleotide sequence identity with previously identified betasatellites) and is designated tomato leaf curl Togo betasatellite-[Togo:Pagouda:2006] (ToLCTGB-[TG:Pag:06]). Replication and systemic spread of ToLCTGB in tomato was mediated by ToLCKuV-TG and ToLCNGV; however, the betasatellite had no effect on disease symptoms induced by either begomovirus. In contrast, ToLCTGB increased symptom severity induced by both viruses in Nicotiana spp. and D. stramonium. Thus, although ToLCTGB increased symptom severity in a host-dependent manner, it does not appear to play a role in ToLCD and may have been present with ToLCKuV-TG as a reassortant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Argüello-Astorga GGR, Guevara-González RG, Herrera-Estrella LR, Rivera-Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100

    Article  PubMed  Google Scholar 

  2. Argüello-Astorga GGR, Ruiz-Medrano R (2001) An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid base pairs by a comparative approach. Arch Virol 146:1465–1485

    Article  PubMed  Google Scholar 

  3. Briddon RW, Markham PG (1994) Universal primers for the PCR amplification of dicot-infecting geminiviruses. Mol Biotechnol 1:202–205

    Article  PubMed  CAS  Google Scholar 

  4. Briddon RW, Bull SE, Mansoor S, Amin I, Markham PG (2002) Universal primers for the PCR-mediated amplification of DNA β: a molecule associated with some monopartite begomoviruses. Mol Biotechnol 20:315–318

    Article  PubMed  CAS  Google Scholar 

  5. Briddon RW, Stanley J (2006) Sub-viral agents associated with plant-infecting single-stranded DNA viruses. Virology 344:198–210

    Article  PubMed  CAS  Google Scholar 

  6. Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X, Fauquet CM (2008) Recommendations for the classification and nomenclature of the DNA-β satellites of begomoviruses. Arch Virol 153:763–781

    Article  PubMed  CAS  Google Scholar 

  7. Brown JK (2000) Molecular markers for the identification and global tracking of whitefly vector-Begomovirus complexes. Virus Res 71:233–260

    Article  PubMed  CAS  Google Scholar 

  8. Chatterji A, Padidam M, Beachy RN, Fauquet CM (1999) Identification of replication specificity determinants in two strains of tomato leaf curl virus from New Delhi. J Virol 73:5481–5489

    PubMed  CAS  Google Scholar 

  9. Chatterji A, Chatterji U, Beachy RN, Fauquet CM (2000) Sequence parameters that determine specificity of binding of the replication-associated protein to its cognate site in two strains of Tomato leaf curl virus-New Delhi. Virology 273:341–350

    Article  PubMed  CAS  Google Scholar 

  10. Chen H, Nelson RS, Sherwood JL (1994) Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze–thaw transformation and drug selection. Biotechniques 16:664–670

    PubMed  CAS  Google Scholar 

  11. Chen LF, Rojas M, Kon T, Gamby K, Xoconostle-Cazares B, Gilbertson RL (2009) A severe symptom phenotype in tomato in Mali is caused by a reassortant between a novel recombinant begomovirus (Tomato yellow leaf curl Mali virus) and a betasatellite. Mol Plant Pathol 10:415–430

    Article  PubMed  CAS  Google Scholar 

  12. Dogra SC, Eini O, Rezaian MA, Randles JW (2009) A novel shaggy-like kinase interacts with the Tomato leaf curl virus pathogenicity determinant C4 protein. Plant Mol Biol 71:25–38

    Article  PubMed  CAS  Google Scholar 

  13. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821

    Article  PubMed  CAS  Google Scholar 

  14. Fontes EP, Eagle PA, Sipe PS, Luckow VA, Hanley-Bowdoin L (1994) Interaction between a geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269:8459–8465

    PubMed  CAS  Google Scholar 

  15. Hajdukiewicz P, Svab Z, Maliga P (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  16. Hou YM, Gilbertson RL (1996) Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J Virol 70:5430–5436

    PubMed  CAS  Google Scholar 

  17. Kon T, Dolores LM, Murayama A, Bajet NB, Hase S, Takahashi H, Ikegami M (2002) Genome organization of an infectious clone of Tomato leaf curl virus (Philippines), a new monopartite Begomovirus. J Phytopathol 150:587–591

    Article  CAS  Google Scholar 

  18. Kon T, Dolores LM, Bajet NB, Hase S, Takahashi H, Ikegami M (2003) Molecular characterization of a strain of Squash leaf curl China virus from the Philippines. J Phytopathol 151:535–539

    Article  CAS  Google Scholar 

  19. Kon T, Rojas MR, Abdourhamane IK, Gilbertson RL (2009) The roles and interactions of begomoviruses and satellite DNAs associated with okra leaf curl disease in Mali, West Africa. J Gen Virol 90:1001–1013

    Article  PubMed  CAS  Google Scholar 

  20. Lefeuvre P, Martin DP, Hoareau M, Naze F, Delatte H, Thierry M, Varsani A, Becker N, Reynaud B, Lett JM (2007) Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol 88:3458–3468

    Article  PubMed  CAS  Google Scholar 

  21. Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJ, Meredith S, Lakay F, Monjane A, Lett JM, Varsani A, Heydarnejad J (2010) The spread of tomato yellow leaf curl virus from the Middle East to the World. PLoS Pathog 6:e1001164

    Article  PubMed  Google Scholar 

  22. Leke WN, Kvarnheden A, Ngane EB, Titanji VPK, Brown JK (2011) Molecular characterization of a new begomovirus and divergent alphasatellite from tomato in Cameroon. Arch Virol 156:925–928

    Article  PubMed  CAS  Google Scholar 

  23. Li ZH, Xie Y, Zhou XP (2005) Tobacco curly shoot virus DNAβ is not necessary for infection but intensifies symptoms in a host-dependent manner. Phytopathology 95:902–908

    Article  PubMed  CAS  Google Scholar 

  24. Lin B, Behjatnia SAA, Dry IB, Randles JW, Rezaian MA (2003) High-affinity Rep-binding is not required for the replication of a geminivirus DNA and its satellite. Virology 305:353–363

    Article  PubMed  CAS  Google Scholar 

  25. Londoño A, Riego-Ruiz L, Argüello-Astorga GR (2010) DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs. Arch Virol 155:1033–1046

    Article  PubMed  Google Scholar 

  26. Mansoor S, Zafar Y, Briddon RW (2006) Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11:209–212

    Article  PubMed  CAS  Google Scholar 

  27. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  PubMed  CAS  Google Scholar 

  28. Nawaz-ul-Rehman MS, Mansoor S, Briddon RW, Fauquet CM (2009) Maintenance of an Old World betasatellite by a New World helper begomovirus and possible rapid adaptation of the betasatellite. J Virol 83:9347–9355

    Article  PubMed  CAS  Google Scholar 

  29. Osei MK, Akromah R, Shih SL, Lee LM, Green SK (2008) First report and molecular characterization of DNA A of three distinct begomoviruses associated with tomato leaf curl disease in Ghana. Plant Dis 92:1585

    Article  Google Scholar 

  30. Padidam M, Beachy RN, Fauquet CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J Gen Virol 76:25–35

    Article  PubMed  CAS  Google Scholar 

  31. Paprotka T, Metzler V, Jeske H (2010) The first DNA 1-like α satellites in association with New World begomoviruses in natural infections. Virology 404:148–157

    Article  PubMed  CAS  Google Scholar 

  32. Patel VP, Rojas MR, Paplomatas EJ, Gilbertson RL (1993) Cloning biologically active geminivirus DNA using PCR and overlapping primers. Nucleic Acids Res 21:1325–1326

    Article  PubMed  CAS  Google Scholar 

  33. Patil BL, Fauquet CM (2010) Differential interaction between cassava mosaic geminiviruses and geminivirus satellites. J Gen Virol 91:1871–1882

    Article  PubMed  CAS  Google Scholar 

  34. Polston JE, Anderson P (1997) The emergence of whitefly-transmitted geminiviruses in tomato in the Western Hemisphere. Plant Dis 81:1358–1369

    Article  Google Scholar 

  35. Rochester DE, DePaulo JJ, Fauquet CM, Beachy RN (1994) Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus, Thailand isolate. J Gen Virol 75:477–485

    Article  PubMed  CAS  Google Scholar 

  36. Rojas MR, Gilbertson RL, Russell DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77:340–347

    Article  CAS  Google Scholar 

  37. Rojas MR, Jiang H, Salati R, Xoconostle-Cazares B, Sudarshana MR, Lucas WJ, Gilbertson RL (2001) Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato yellow leaf curl virus. Virology 291:110–125

    Article  PubMed  CAS  Google Scholar 

  38. Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394

    Article  PubMed  CAS  Google Scholar 

  39. Rojas MR, Gilbertson RL (2008) Emerging plant viruses: a diversity of mechanisms and opportunities. In: Roossinck MJ (ed) Plant virus evolution. Springer, Berlin, pp 27–51

    Chapter  Google Scholar 

  40. Romay G, Chirinos D, Geraud-Pouey F, Desbiez C (2010) Association of an atypical alphasatellite with a bipartite New World begomovirus. Arch Virol 155:1843–1847

    Article  PubMed  CAS  Google Scholar 

  41. Saunders K, Briddon RW, Stanley J (2008) Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. J Gen Virol 89:3165–3172

    Article  PubMed  CAS  Google Scholar 

  42. Shih SL, Kumar S, Tsai WS, Lee LM, Green SK (2009) Complete nucleotide sequences of okra isolates of Cotton leaf curl Gezira virus and their associated DNA-β from Niger. Arch Virol 154:369–372

    Article  PubMed  CAS  Google Scholar 

  43. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  44. Tiendrébéogo F, Lefeuvre P, Hoareau M, Villemot J, Konaté G, Traoré AS, Barro N, Traoré VS, Reynaud B, Traoré O, Lett JM (2010) Molecular diversity of Cotton leaf curl Gezira virus isolates and their satellite DNAs associated with okra leaf curl disease in Burkina Faso. Virol J 7:48

    Article  PubMed  Google Scholar 

  45. Tiendrébéogo F, Lefeuvre P, Hoareau M, Traoré VS, Barro N, Péréfarres F, Reynaud B, Traoré AS, Konaté G, Lett JM, Traoré O (2011) Molecular and biological characterization of Pepper yellow vein Mali virus (PepYVMV) isolates associated with pepper yellow vein disease in Burkina Faso. Arch Virol 156:483–487

    Article  PubMed  Google Scholar 

  46. Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498

    Article  PubMed  CAS  Google Scholar 

  47. Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  48. Vidavski F (2007) Exploitation of resistance genes found in wild tomato species to produce resistant cultivars; pile up of resistance genes. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Springer, Dordrecht, pp 363–372

    Chapter  Google Scholar 

  49. Zhou YC, Noussourou M, Kon T, Rojas M, Jiang H, Chen LF, Gamby K, Foster R, Gilbertson RL (2008) Evidence of local evolution of tomato-infecting begomovirus species in West Africa: characterization of tomato leaf curl Mali virus and tomato yellow leaf crumple virus from Mali. Arch Virol 153:693–706

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Masato Ikegami (Tokyo University of Agriculture, Japan) for providing the binary vector pBIN2. We also thank Kenneth Shenge and Aissatou Ali Alfari for collection of samples, and Maria Rojas and Nasrin Hakimi for excellent technical assistance. This research was supported by the Integrated Pest Management-Collaborative Research Support Program (IPM-CRSP) and Agricultural Biotechnology Support Project II (ABSP II). These projects were made possible by the United States Agency for International Development (USAID) and the generous support of the American people through USAID Cooperative Agreements No. EPPA-00-04-00016-00 (IPM-CRSP) and No. GDG-0-00-02-00017-00 (ABSP II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Gilbertson.

Additional information

Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank database under the accession numbers FJ685620 (tomato leaf curl Kumasi virus-[Togo:Pagouda:2006]), FJ685621 (tomato leaf curl Nigeria virus-[Nigeria:Odogbo:2006]) and HQ586965 (tomato leaf curl Togo betasatellite-[Togo:Pagouda:2006]).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon, T., Gilbertson, R.L. Two genetically related begomoviruses causing tomato leaf curl disease in Togo and Nigeria differ in virulence and host range but do not require a betasatellite for induction of disease symptoms. Arch Virol 157, 107–120 (2012). https://doi.org/10.1007/s00705-011-1139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1139-0

Keywords

Navigation