Skip to main content
Log in

The possible molecular evolution of sapoviruses by inter- and intra-genogroup recombination

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Sapporo virus belongs to the genus Sapovirus (family Caliciviridae) and has a non-segmented single-stranded, positive-sense RNA genome. This virus causes acute gastroenteritis in human, porcine and mink hosts. In this study, the complete genome of a Brazilian sapovirus isolate from a child with acute gastroenteritis was determined. A phylogenetic tree was constructed to analyze the genotype of this sapovirus (Sapo_BR-DF01), and possible intra- and inter-genogroups recombination events were evaluated in silico using the RDP3 program. Two inter-genogroup and two intra-genogroup recombination events were newly recognized in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boni MF, Posada D, Feldman MW (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047

    Article  PubMed  CAS  Google Scholar 

  2. Chang KO, Sosnovtsev SS, Belliot G, Wang Q, Saif LJ, Green KY (2005) Reverse genetics system for porcine enteric calicivirus, a prototype sapovirus in the Caliciviridae. J Virol 79:1409–1416

    Article  PubMed  CAS  Google Scholar 

  3. Chiba S, Sakuma Y, Kogasaka R, Akihara M, Horino K, Nakao T, Fukui S (1979) Outbreak of gastroenteritis associated with calicivirus in an infant home. J Med Virol 4:249–254

    Article  PubMed  CAS  Google Scholar 

  4. Chiba S, Nakata S, Numata-Kinoshita K, Honma S (2000) Sapporo virus: history and recent findings. J Infect Dis 181(Suppl 2):S303–S308

    Article  PubMed  Google Scholar 

  5. Cunha JB, de Mendonca MCL, Miagostovich MP, Leite JPG (2010) Genetic diversity of porcine enteric caliciviruses in pigs raised in Rio de Janeiro State, Brazil. Arch Virol 155:1301–1305

    Article  PubMed  CAS  Google Scholar 

  6. Farkas T, Zhong WM, Jing Y, Huang PW, Espinosa SM, Martinez N, Morrow AL, Ruiz-Palacios GM, Pickering LK, Jiang X (2004) Genetic diversity among sapoviruses. Arch Virol 149:1309–1323

    Article  PubMed  CAS  Google Scholar 

  7. Fullerton SWB, Blaschke M, Coutard B, Gebhardt J, Gorbalenya A, Canard B, Tucker PA, Rohayem J (2007) Structural and functional characterization of sapovirus RNA-dependent RNA polymerase. J Virol 81:1858–1871

    Article  PubMed  CAS  Google Scholar 

  8. Gibbs MJ, Armstrong JS, Gibbs AJ (2000) Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582

    Article  PubMed  CAS  Google Scholar 

  9. Gutierrez-Escolano AL, Velazquez FR, Escobar-Herrera J, Saucedo CL, Torres J, Estrada-Garcia T (2010) Human caliciviruses detected in Mexican children admitted to hospital during 1998–2000, with severe acute gastroenteritis not due to other enteropathogens. J Med Virol :632–637

  10. Guo M, Evermann JF, Saif LJ (2001) Detection and molecular characterization of cultivable caliciviruses from clinically normal mink and enteric caliciviruses associated with diarrhea in mink. Arch Virol 146:479–493

    Article  PubMed  CAS  Google Scholar 

  11. Hansman GS, Natori K, Oka T, Ogawa S, Tanaka K, Nagata N, Ushijima H, Takeda N, Katayama K (2004) Cross-reactivity among sapovirus recombinant capsid proteins. Arch Virol 150:21–36

    Article  PubMed  Google Scholar 

  12. Hansman GS, Takeda N, Oka T, Oseto M, Hedlund KO, Katayama K (2005) Intergenogroup recombination in sapoviruses. Emerg Infect Dis 11:1916–1920

    PubMed  Google Scholar 

  13. Hansman GS, Oka T, Sakon N, Takeda N (2007) Antigenic diversity of human sapoviruses. Emerg Infect Dis 13:1519–1525

    PubMed  CAS  Google Scholar 

  14. Johnsen CK, Midgley S, Böttiger B (2009) Genetic diversity of sapovirus infections in Danish children 2005–2007. J Clin Virol 46:265–269

    Article  PubMed  CAS  Google Scholar 

  15. Katayama K, Miyoshi T, Uchino K, Oka T, Tanaka T, Takeda N, Hansman GS (2004) Novel recombinant sapovirus. Emerg Infect Dis 10:1874–1876

    PubMed  CAS  Google Scholar 

  16. Kirkegaard K, Baltimore D (1986) The mechanism of RNA recombination in poliovirus. Cell 47:433–443

    Article  PubMed  CAS  Google Scholar 

  17. Kroneman A, Harris J, Vennema H, Duizer E, van Duynhoven Y, Gray J, Iturriza M, Bottiger B, Falkenhorst G, Johnsen C, von Bonsdorff CH, Maunula L, Kuusi M, Pothier P, Gallay A, Schreier E, Koch J, Szuecs G, Reuter G, Krisztalovics K, Lynch M, McKeown P, Foley B, Coughlan S, Ruggeri MF, Di Bartolo I, Vainio K, Isakbaeva E, Poljsak-Prijatelj M, Grom AH, Bosch A, Buesa J, Fauquier AS, Hernandez-Pezzi G, Hedlund KO, Koopmans M (2008) Data quality of 5 years of central norovirus outbreak reporting in the European Network for food-borne viruses. J Public Health 30:82–90

    Article  CAS  Google Scholar 

  18. Lai MMC (1992) RNA Recombination in Animal and Plant Viruses. Microbiol Rev 56:61–79

    PubMed  CAS  Google Scholar 

  19. Martella V, Lorusso E, Banyai K, Decaro N, Corrente M, Elia G, Cavalli A, Radogna A, Costantini V, Saif LJ, Lavazza A, DI Trani L, Buonavoglia C (2008) Identification of a porcine calicivirus related genetically to human sapoviruses. J Clin Microbiol 46:1907–1913

    Article  PubMed  CAS  Google Scholar 

  20. Martin DP (2009) Recombination detection and analysis using RDP3. Methods Mol Biol 537:185–205

    Article  PubMed  CAS  Google Scholar 

  21. Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    Article  PubMed  CAS  Google Scholar 

  22. Martin D, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  PubMed  CAS  Google Scholar 

  23. Motomura K, Yokoyama M, Ode H, Nakamura H, Mori H, Kanda T, Oka T, Katayama K, Noda M, Tanaka T, Takeda N, Sato H. Divergent evolution of norovirus GII/4 by genome recombination from May 2006 to February 2009 in Japan. J Virol 84:8085–8097

  24. Oka T, Katayama K, Ogawa S, Hansman GS, Kageyama T, Ushijima H, Miyamura T, Takeda N (2005) Proteolytic processing of sapovirus ORF1 polyprotein. J Virol 79:7283–7290

    Article  PubMed  CAS  Google Scholar 

  25. Oka T, Yamamoto M, Katayama K, Hansman GS, Ogawa S, Miyamura T, Takeda N (2006) Identification of the cleavage sites of sapovirus open reading frame 1 polyprotein. J Gen Virol 87:3329–3338

    Article  PubMed  CAS  Google Scholar 

  26. Padidam M, Sawer S, Fauquet CM (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265(2):218–225

    Article  PubMed  CAS  Google Scholar 

  27. Pang XLL, Lee BE, Tyrrell GJ, Preiksaitis JK (2009) Epidemiology and genotype analysis of sapovirus associated with gastroenteritis outbreaks in Alberta, Canada: 2004–2007. J Infect Dis 199:547–551

    Article  PubMed  Google Scholar 

  28. Phan TG, Khamrin P, Quang TD, Dey SK, Takanashi S, Okitsu S, Maneekarn N, Ushijima H (2007) Emergence of intragenotype recombinant sapovirus in Japan. Infect Genet Evol 7:542–546

    Article  PubMed  CAS  Google Scholar 

  29. Schlenker C, Surawicz CM (2009) Emerging infections of the gastrointestinal tract. Best Practice & Research Clin Gastroenterol 23:89–99

    Article  Google Scholar 

  30. Schuffenecker I, Ando T, Thouvenot D, Lina B, Aymard M (2001) Genetic classification of “Sapporo-like viruses”. Arch Virol 146:2115–2132

    Article  PubMed  CAS  Google Scholar 

  31. Smith JM (1992) Analyzing the mosaic structure of genes. J Mol Evol 34:126–129

    PubMed  CAS  Google Scholar 

  32. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241

    Article  PubMed  CAS  Google Scholar 

  33. Svraka S, Vennema H, van der Veer B, Hedlund KO, Thorhagen M, Siebenga J, Duizer E, Koopmans M (2010) Epidemiology and genotype analysis of emerging sapovirus associated infections across Europe. J Clin Microbiol 48:2191–2198

    Article  PubMed  CAS  Google Scholar 

  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. doi:10.1093/molbev/msr121

  35. Yan H, Yagyu F, Okitsu S, Nishio O, Ushijima H (2003) Detection of norovirus (GI, GII), Sapovirus and astrovirus in fecal samples using reverse transcription single-round multiplex PCR. J Virol Methods 114:37–44

    Article  PubMed  CAS  Google Scholar 

  36. Xavier MPTP, Oliveira SA, Ferreira MSR, Victoria M, Miranda V, Silva MFM, Strina A, Barreto ML, Miagostovicht MP, Leite JPG (2009) Detection of caliciviruses associated with acute infantile gastroenteritis in Salvador, an urban center in Northeast Brazil. Braz J Med Bio Res 42:438–444

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author is supported financially by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). The fourth and fifth authors are research fellows of CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). We thank Dr. Tomoichiro Oka (National Institute of Infectious Diseases, Japan) for the technical discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Nagata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2011_1079_MOESM1_ESM.ppt

Supplementary Fig. 1 Schematic representation of the sapovirus genome and the position of primers used for RT-PCR, showing overlapping regions of the clones. Supplementary material 1 (PPT 115 kb)

705_2011_1079_MOESM2_ESM.ppt

Supplementary Fig. 2 Recombination analysis based on the 3′ region of the sapovirus genome using the RDP method. A schematic representation of the genomic region used in this analysis is shown below, to scale, with the corresponding nucleotide positions. Longer boxes represent the genome, and the predicted recombinant regions are shown as smaller boxes below each genome. The possible parental or daughter sequences are indicated by dotted lines. The genogroup-genotype classification is indicated at the right. p-values identified by RDP for each recombination event are indicated below the virus identifier. Supplementary material 2 (PPT 162 kb)

Supplementary material 3 (DOC 140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Anjos, K., Lima, L.M.P., Silva, P.A. et al. The possible molecular evolution of sapoviruses by inter- and intra-genogroup recombination. Arch Virol 156, 1953–1959 (2011). https://doi.org/10.1007/s00705-011-1079-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1079-8

Keywords

Navigation