Skip to main content
Log in

Genomic characterization of pararetroviral sequences in wild Dahlia spp. in natural habitats

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The genome structure and organization of endogenous caulimovirus sequences from dahlia (Dahlia spp), dahlia mosaic virus (DMV)-D10 from three wild species, D. coccinea (D10-DC), D. sherffii (D10-DS) and D. tenuicaulis (D10-DT), were determined and compared to those from cultivated species of dahlia, D. variabilis (DvEPRS). The complete ca. 7-kb dsDNA genomes of D10-DC, D10-DS, and D10-DT had a structure and organization typical of a caulimovirus and shared 89.3 to 96.6% amino acid sequence identity in various open reading frames (ORF) when compared to DvEPRS. The absence of the aphid transmission factor and the truncated coat protein fused with the reverse transcriptase ORF were common among these DMV-D10 isolates from wild Dahlia species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Albouy J (1995) Dahlia. In: Lobenstein G, Lawson RH, Brunt AA (eds) Virus and virus-like diseases of bulb and flower crops. Wiley, New York, pp 265–273

    Google Scholar 

  2. Altschul F, Thomas LM, Alejandro AS, Jinghui Z, Zheng ZMW, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  3. Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  4. Benfey PN, Ren L, Chua NH (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue specific expression patterns. EMBO J 8:2195–2202

    PubMed  CAS  Google Scholar 

  5. Benfey PN, Ren L, Chua NH (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J 9:1685–1696

    PubMed  CAS  Google Scholar 

  6. Benfey PN, Ren L, Chua NH (1990) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J 9:1677–1684

    PubMed  CAS  Google Scholar 

  7. Benson DA, Karsch-Mizrach I, Lipman DJ, Ostell J, Wheeler DL (2005) GenBank. Nucleic Acids Res 33:34–38

    Article  Google Scholar 

  8. Bonneville JM, Sanfacon H, Futterer J, Hohn T (1989) Posttranscriptional trans-activation in cauliflower mosaic virus. Cell 6:1135–1143

    Article  Google Scholar 

  9. Brunt AA (1971) Some hosts and properties of dahlia mosaic virus. Ann Appl Biol 67:357–368

    Article  Google Scholar 

  10. Cavanilles AJ (1791) Icones et Descriptiones Plantarum, vol 1

  11. Daubert S, Shepherd RJ, Gardner RC (1983) Insertional mutagenesis of the cauliflower mosaic virus genome. Gene 25:201–208

    Article  PubMed  CAS  Google Scholar 

  12. Dey N, Maiti IB (1999) Structure and promoter/leader deletion analysis of Mirabilis mosaic virus (MMV) full length transcript promoter in transgenic plants. Plant Mol Biol 40:771–782

    Article  PubMed  CAS  Google Scholar 

  13. Eid S, Druffel KL, Saar D, Pappu HR (2009) Incidence of multiple and distinct species of caulimoviruses in dahlias (D. variabilis). HortScience 44:1498–1500

    Google Scholar 

  14. Eid S, Druffel KL, Saar D, Pappu HR (2011) Plant para-retroviral sequences in wild Dahlia species in their natural habitats in Mexican mountain ranges. Plant Pathol 60:378–383

    Article  CAS  Google Scholar 

  15. Glasheen BM, Polashock IJ, Lawrence DM, Gillet JM, Ramsdell DC, Vorsa N, Hillman BI (2002) Cloning, sequencing, and promoter identification of Blueberry red ringspot virus, a member of the family Caulimoviridae with similarities to the “Soybean chlorotic mottle-like” genus. Arch Virol 147:2169–2186

    Article  PubMed  CAS  Google Scholar 

  16. Hasegawa A, Verver J, Shimada A, Saito M, Goldbach R, Van Kammen A, Miki K, Kameya-Iwaki HibiT (1989) The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter. Nucleic Acids Res 17:9993–10013

    Article  PubMed  CAS  Google Scholar 

  17. Hohn T, Fütterer J (1997) The proteins and functions of plant pararetroviruses: knowns and unknowns. Critical Rev in Plant Sciences 16:133–161

    Article  CAS  Google Scholar 

  18. Hull R (2002) Mathew’s Plant Virology, 4th edn. New York, Academic Press, p 1001

    Google Scholar 

  19. Hull R, Sadler J, Longstaff M (1986) The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses. The EMBO J 5:3083–3090

    CAS  Google Scholar 

  20. Jacquot E, Geldreich A, Keller M, Yot P (1998) Mapping regions of the cauliflower mosaic virus ORFIII product required for infectivity. Virology 242:395–402

    Article  PubMed  CAS  Google Scholar 

  21. Kobayashi K, Tsuge S, Nakayashiki H, Mise K, Furusawa I (1998) Requirements of cauliflower mosaic virus open reading frame VI product for viral gene expression and multiplication in turnip protoplasts. Microb Immunol 42:377–386

    CAS  Google Scholar 

  22. Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH (1989) Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. PNAS 86:7890–7894

    Article  PubMed  CAS  Google Scholar 

  23. Leh V, Jacquot E, Geldreich A, Thomas H, Leclerc D, Cerutti M, Yot P, Keller M, Blanc S (1999) Aphid transmission of cauliflower mosaic virus requires the viral PIII protein. The EMBO J 18:7077–7085

    Article  CAS  Google Scholar 

  24. Maiti IB, Gowda S, Kierman J, Ghosh SK, Shepherd RJ (1997) Promoter/leader analysis and plant expression vectors with the Figwort mosaic virus (FMV) full-length transcript (FLt) promoter containing single and double enhancer domains. Transgene Res 6:143–156

    Article  CAS  Google Scholar 

  25. Medberry SL, Lockhart BEL, Olszewski NE (1992) The Commelina yellow mottle virus promoter is a strong promoter in vascular and reproductive tissues. Plant Cell 4:185–192

    Article  PubMed  CAS  Google Scholar 

  26. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the Cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  27. Ow DW, Jacobs JD, Howell SH (1987) Functional regions of the cauliflower mosaic virus 35S promoter determined by the use of the firefly luciferase gene as a reporter of promoter activity. PNAS 84:4870–4874

    Article  PubMed  CAS  Google Scholar 

  28. Pahalawatta V, Druffel KB, Pappu HR (2007) Incidence and relative prevalence of distinct caulimoviruses (Genus Caulimovirus, Family Caulimoviridae) associated with dahlia mosaic in Dahlia variabilis. Plant Dis 91:1194–1197

    Article  CAS  Google Scholar 

  29. Pahalawatta V, Druffel K, Pappu HR (2007) Seed transmission of dahlia mosaic virus in Dahlia pinnata. Plant Dis 91:88–91

    Article  CAS  Google Scholar 

  30. Pahalawatta V, Druffel KL, Wyatt SD, Eastwell KC, Pappu HR (2008) Genome structure and organization of a novel and distinct species of genus Caulimovirus (Family Caulimoviridae) associated with dahlia mosaic. Arch Virol 153:733–738

    Article  PubMed  CAS  Google Scholar 

  31. Pahalawatta V, Druffel KL, Pappu HR (2008) A new and distinct species in the genus Caulimovirus exists as an endogenous plant pararetroviral sequence in its host, Dahlia variabilis. Virology 376:253–257

    Article  PubMed  CAS  Google Scholar 

  32. Pappu HR, Wyatt SD, Druffel KB (2005) Dahlia mosaic virus: Molecular detection and distribution in dahlia in the US. HortScience 40:697–699

    Google Scholar 

  33. Pappu HR, Druffel KL, Miglino R, Van Schadewijk AR (2008) Nucleotide sequence and genome organization of a new and distinct caulimovirus associated with dahlia mosaic. Arch Virol 153:2145–2148

    Article  PubMed  CAS  Google Scholar 

  34. Pirone TP, Blanc S (1996) Helper-dependent vector transmission of plant viruses. Annu Rev Phytopathol 34:227–247

    Article  PubMed  CAS  Google Scholar 

  35. Richins RD, Shepherd RJ (1983) Physical maps of the genome of Dahlia mosaic virus and Mirabilis mosaic virus—two members of the Caulimovirus group. Virology 124:208–214

    Article  PubMed  CAS  Google Scholar 

  36. Richins RD, Scholthof HB, Shepherd J (1987) Sequence of figwort mosaic virus DNA (caulimovirus group). Nucleic Acids Res 15:8451–8466

    Article  PubMed  CAS  Google Scholar 

  37. Saar DE (1999) A phylogenetic analysis of the genus Dahlia (Asteraceae): an interdisciplinary study. Dissertation, Northern Illinois University

  38. Schoelz JE, Shepherd RJ (1988) Host range control of cauliflower mosaic virus. Virology 162:30–37

    Article  CAS  Google Scholar 

  39. Sørensen PD (1969) Revision of the genus Dahlia (Compositae, Heliantheae-Coreopsidinae). Rhodora 71:309–365, 367–416

  40. Staginnus C, Iskara-Caruana ML, Lockhart B, Hohn T, Richert-Pöggeler KR (2009) Suggestions for a nomenclature of endogenous pararetroviral sequences in plants. Arch Virol 154:1189–1193

    Article  PubMed  CAS  Google Scholar 

  41. Stavolone L, Ragozzino A, Hohn T (2003) Characterization of cestrum yellow leaf curling virus: a new member of the family Caulimoviridae. J Gen Virol 84:3459–3464

    Article  PubMed  CAS  Google Scholar 

  42. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  43. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  44. Torruella M, Gordon K, Hohn T (1989) Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. EMBO J 8:2819–2825

    PubMed  CAS  Google Scholar 

  45. Wurch T, Kirchherr D, Mesnard J, Lebeurier G (1990) The cauliflower mosaic virus open reading frame VII product can be expressed in Saccharomyces cerevisiae but is not detected in infected plants. J Virol 64:2594–2598

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Samuel and Patricia Smith Endowment for Dahlia Virus Research, created by the American Dahlia Society, and funding from the USDA Northwest Nursery Crop Research Center. S. Eid was supported, in part, by a graduate student research assistantship from the WSU-Agricultural Research Center. PPNS No. 0574, Department of Plant Pathology, College of Agricultural, Human and Natural Resource Sciences, Agricultural Research Center, Project # WNPO 0545, Washington State University, Pullman, WA 99164-6430, USA. Field work in Mexico was supported, in part, by KY NSF EPSCoR grant no. 3046884400-06-403 to DES. DES expresses her appreciation for field assistance from Jeffrey R. Bacon, Universidad Juárez del Estado de Durango. Support from the Plant Virus Ecology Network NSF RCN AWARD IOS-0639139 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Pappu.

Additional information

The sequences described here were deposited in GenBank with the following accession numbers: HQ261756, HQ261757, HQ261758, HQ261759, HQ336476, HQ336477, HQ336478, HQ336479, HQ416675, HQ416676, HQ416677, and HQ416678.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 86 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eid, S., Almeyda, C.V., Saar, D.E. et al. Genomic characterization of pararetroviral sequences in wild Dahlia spp. in natural habitats. Arch Virol 156, 2079–2084 (2011). https://doi.org/10.1007/s00705-011-1076-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1076-y

Keywords

Navigation