Skip to main content
Log in

Different incubation temperatures affect viral polymerase activity and yields of low-pathogenic avian influenza viruses in embryonated chicken eggs

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Various incubation conditions (35°C–38°C, 2–7 days) have been used in surveillance studies of the prevalence of avian influenza viruses in wild birds. Here, we studied viral polymerase activity and virus growth kinetics of low-pathogenic avian influenza viruses (LPAIVs) isolated from field samples [A/duck/Hong Kong/365/1978 (H4N6) and A/duck/Nanchang/2–0480/2000 (H9N2)] during incubation at different temperatures (35°C, 37°C, and 39°C) in the allantoic cavity of 10-day-old embryonated chicken eggs (ECE). The higher incubation temperatures (37°C and 39°C) resulted in a significantly higher rate of virus growth, which is most likely a result of increased viral polymerase activity (20%–60%), than was observed at 35°C, and as much as a 100% greater virus yield (as measured by hemagglutination assay) was observed two days after inoculation. Our findings revealed that the optimal activity of the viral polymerase complex, resulting in the highest yield of LPAIV field isolates, could be obtained by incubation for two days in ECE at 37°C and 39°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexander DJ (2000) A review of avian influenza in different bird species. Vet Microbiol 74:3–13

    Article  PubMed  CAS  Google Scholar 

  2. Almond JW (1977) A single gene determines the host range of influenza virus. Nature 270:617–618

    Article  PubMed  CAS  Google Scholar 

  3. Berk KN (1980) Forward and backward stepping in variable selection. J Stat Comput Simul 10:177–185

    Article  Google Scholar 

  4. Bradel-Tretheway BG, Kelley Z, Chakraborty-Sett S, Takimoto T, Kim B, Dewhurst S (2008) The human H5N1 influenza A virus polymerase complex is active in vitro over a broad range of temperatures, in contrast to the WSN complex, and this property can be attributed to the PB2 subunit. J Gen Virol 89:2923–2932

    Article  PubMed  CAS  Google Scholar 

  5. Cheng XW, Zhou L, Zhao J, Fang SS, Yu L, Ye BY, He JF, Lu X, Zhang ZQ, Yang H (2004) [Application of fluorescent real-time reverse transcriptasepolymerase chain reaction in detecting influenza viruses]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 18:289–290

  6. Claas EC, Osterhaus AD (1998) New clues to the emergence of flu pandemics. Nat Med 4:1122–1123

    Article  PubMed  CAS  Google Scholar 

  7. European Commission CDEaadmfaiapfiCDEOJEC

  8. Feare CJ, Yasue M (2006) Asymptomatic infection with highly pathogenic avian influenza H5N1 in wild birds: how sound is the evidence? Virol J 3:96

    Google Scholar 

  9. Finkelstein DB, Mukatira S, Mehta PK, Obenauer JC, Su X, Webster RG, Naeve CW (2007) Persistent host markers in pandemic and H5N1 influenza viruses. J Virol 81:10292–10299

    Article  PubMed  CAS  Google Scholar 

  10. Gabriel G, Dauber B, Wolff T, Planz O, Klenk HD, Stech J (2005) The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA 102:18590–18595

    Article  PubMed  CAS  Google Scholar 

  11. Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840–1842

    Article  PubMed  CAS  Google Scholar 

  12. Hatta M, Hatta Y, Kim JH, Watanabe S, Shinya K, Nguyen T, Lien PS, Le QM, Kawaoka Y (2007) Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog 3:1374–1379

    Article  PubMed  CAS  Google Scholar 

  13. Hinshaw VS, Webster RG, Turner B (1978) Novel influenza A viruses isolated from Canadian feral ducks: including strains antigenically related to swine influenza (Hsw1N1) viruses. J Gen Virol 41:115–127

    Article  PubMed  CAS  Google Scholar 

  14. Homme PJ, Easterday BC (1970) Avian influenza virus infections. I. Characteristics of influenza A-turkey-Wisconsin-1966 virus. Avian Dis 14:66–74

    Google Scholar 

  15. Horimoto T, Kawaoka Y (1997) Biologic effects of introducing additional basic amino acid residues into the hemagglutinin cleavage site of a virulent avian influenza virus. Virus Res 50:35–40

    Article  PubMed  CAS  Google Scholar 

  16. Hsu J (1996) Multiple comparisons, theory and methods. Chapman and Hall, London

    Google Scholar 

  17. Faraway JJ (2006) Extending the linear Model with R: generalized linear, mixed effects and nonparametric regression models. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  18. Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, Webster RG (2004) Influenza A viruses of migrating wild aquatic birds in North America. Vector Borne Zoonotic Dis 4:177–189

    Google Scholar 

  19. Lazarowitz SG, Goldberg AR, Choppin PW (1973) Proteolytic cleavage by plasmin of the HA polypeptide of influenza virus: host cell activation of serum plasminogen. Virology 56:172–180

    Article  PubMed  CAS  Google Scholar 

  20. Manzoor R, Sakoda Y, Nomura N, Tsuda Y, Ozaki H, Okamatsu M, Kida H (2009) PB2 protein of a highly pathogenic avian influenza virus strain A/chicken/Yamaguchi/7/2004 (H5N1) determines its replication potential in pigs. J Virol 83:1572–1578

    Article  PubMed  CAS  Google Scholar 

  21. Marjuki H, Scholtissek C, Franks J, Negovetich NJ, Aldridge JR, Salomon R, Finkelstein D, Webster RG Three amino acid changes in PB1-F2 of highly pathogenic H5N1 avian influenza virus affect pathogenicity in mallard ducks. Arch Virol 155:925–934

  22. Marjuki H, Yen HL, Franks J, Webster RG, Pleschka S, Hoffmann E (2007) Higher polymerase activity of a human influenza virus enhances activation of the hemagglutinin-induced Raf/MEK/ERK signal cascade. Virol J 4:134

    Article  PubMed  Google Scholar 

  23. Massin P, van der Werf S, Naffakh N (2001) Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol 75:5398–5404

    Article  PubMed  CAS  Google Scholar 

  24. Murakami Y, Nerome K, Yoshioka Y, Mizuno S, Oya A (1988) Difference in growth behavior of human, swine, equine, and avian influenza viruses at a high temperature. Arch Virol 100:231–244

    Article  PubMed  CAS  Google Scholar 

  25. Murphy BR, Hinshaw VS, Sly DL, London WT, Hosier NT, Wood FT, Webster RG, Chanock RM (1982) Virulence of avian influenza A viruses for squirrel monkeys. Infect Immun 37:1119–1126

    PubMed  CAS  Google Scholar 

  26. Murphy BR, Markoff LJ, Hosier NT, Massicot JG, Chanock RM (1982) Production and level of genetic stability of an influenza A virus temperature-sensitive mutant containing two genes with ts mutations. Infect Immun 37:235–242

    PubMed  CAS  Google Scholar 

  27. Naffakh N, Massin P, Escriou N, Crescenzo-Chaigne B, van der Werf S (2000) Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J Gen Virol 81:1283–1291

    PubMed  CAS  Google Scholar 

  28. Nili H, Asasi K (2003) Avian influenza (H9N2) outbreak in Iran. Avian Dis 47:828–831

    Google Scholar 

  29. OIE MoDTaVoTAP, section 2.3, chapter 2.3.4. Avian Influenza. (NB: Version adopted by the World Assembly of Delegates of the OIE in May 2009). http://www.oie.int/fr/normes/mmanual/2008/pdf/2.03.04_AI.pdf. Last accessed on 07.10.2010

  30. Rott R, Reinacher M, Orlich M, Klenk HD (1980) Cleavability of hemagglutinin determines spread of avian influenza viruses in the chorioallantoic membrane of chicken embryo. Arch Virol 65:123–133

    Article  PubMed  CAS  Google Scholar 

  31. Scholtissek C, Rott R (1969) Effect of temperature on the multiplication of an Influenza virus. J Gen Virol 5:283–290

    Google Scholar 

  32. Song MS, Pascua PN, Lee JH, Baek YH, Lee OJ, Kim CJ, Kim H, Webby RJ, Webster RG, Choi YK (2009) The polymerase acidic protein gene of influenza a virus contributes to pathogenicity in a mouse model. J Virol 83:12325–12335

    Article  PubMed  CAS  Google Scholar 

  33. Torreira E, Schoehn G, Fernandez Y, Jorba N, Ruigrok RW, Cusack S, Ortin J, Llorca O (2007) Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res 35:3774–3783

    Article  PubMed  CAS  Google Scholar 

  34. Vasilev I, Rudneva IA, Koptiaeva IB (2009) Comparative study of avian influenza virus propagation in the cell culture and chick embryos. Vopr Virusol 54:18–23

    Google Scholar 

  35. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    PubMed  CAS  Google Scholar 

  36. WHO MoAIDaS, 25–27. http://www.wpro.who.int/NR/rdonlyres/EFD2B9A7-2265-4AD0-BC98-97937B4FA83C/0/manualonanimalaidiagnosisandsurveillance.pdf. Last accessed on 07.10.2010

  37. Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG (2004) Matrix gene of influenza a viruses isolated from wild aquatic birds: ecology and emergence of influenza a viruses. J Virol 78:8771–8779

    Google Scholar 

Download references

Acknowledgments

This project was funded in part by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract no. HHSN266200700005C, and by the American Lebanese Syrian Associated Charities (ALSAC). We thank John Franks, Kelly Jones, and Patrick Seiler for helpful advice. Also, we thank Stephan Pleschka for providing the luciferase reporter plasmid (pPol I A-luci) and Sharon Naron and David Galloway for scientific editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, V., Marjuki, H., Krauss, S.L. et al. Different incubation temperatures affect viral polymerase activity and yields of low-pathogenic avian influenza viruses in embryonated chicken eggs. Arch Virol 156, 987–994 (2011). https://doi.org/10.1007/s00705-011-0933-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-0933-z

Keywords

Navigation