Skip to main content
Log in

Membrane permeabilization of the African horse sickness virus VP5 protein is mediated by two N-terminal amphipathic α-helices

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The VP5 outer capsid protein of African horse sickness virus (AHSV) is cytotoxic when expressed in Spodoptera frugiperda (Sf-9) cells. Secondary structure analysis of the VP5 amino acid sequence of AHSV-9 identified two N-terminal amphipathic α-helices within the first 43 amino acids. Baculovirus expression of N- and C-terminal truncated VP5 proteins in Sf-9 cells indicated that the N-terminal 43 amino acids correlated with low levels of protein expression and with increased membrane permeabilization and cytotoxicity. Exogenous addition of chemically synthesized VP5 peptides indicated that both N-terminal amphipathic α-helices are required for membrane permeabilization of Sf-9 cells. These findings suggest that AHSV VP5 is a membrane-destabilizing protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Banerjee M, Johnson JE (2008) Activation, exposure and penetration of virally encoded membrane-active polypeptides during non-enveloped virus entry. Curr Protein Pept Sci 9:16–27

    Article  PubMed  CAS  Google Scholar 

  2. Bong DT, Janshoff A, Steinem C, Ghadiri MR (2000) Membrane partitioning of the cleavage peptide in flock house virus. Biophys J 78:839–845

    Article  PubMed  CAS  Google Scholar 

  3. Browne EP, Bellamy AR, Taylor JA (2000) Membrane-destabilizing activity of rotavirus NSP4 is mediated by a membrane-proximal amphipathic domain. J Gen Virol 81:1955–1959

    PubMed  CAS  Google Scholar 

  4. Coetzer JAW, Erasmus BJ (1994) African horse sickness. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock. Oxford University Press, Cape Town, pp 460–475

    Google Scholar 

  5. Davis MP, Bottley G, Beales LP, Killington RA, Rowlands DJ, Tuthill TJ (2008) Recombinant VP4 of human rhinovirus induces permeability in model membranes. J Virol 82:4169–4174

    Article  PubMed  CAS  Google Scholar 

  6. Decker T, Lohmann-Matthes ML (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 115:61–69

    Article  PubMed  CAS  Google Scholar 

  7. Denisova E, Dowling W, LaMonica R, Shaw R, Scarlata S, Ruggeri F, Mackow ER (1999) Rotavirus capsid protein VP5* permeabilizes membranes. J Virol 73:3147–3153

    PubMed  CAS  Google Scholar 

  8. du Plessis M, Nel LH (1997) Comparative sequence analysis and expression of the M6 gene, encoding the outer capsid protein VP5, of African horsesickness virus serotype nine. Virus Res 47:41–49

    Article  PubMed  CAS  Google Scholar 

  9. Epand RM, Shai Y, Segrest JP, Anantharamaiah GM (1995) Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers 37:319–338

    Article  PubMed  CAS  Google Scholar 

  10. Forzan M, Marsh M, Roy P (2007) Bluetongue virus entry into cells. J Virol 81:4819–4827

    Article  PubMed  CAS  Google Scholar 

  11. Guinea R, Carrasco L (1994) Influenza virus M2 protein modifies membrane permeability in E. coli cells. FEBS Lett 343:242–246

    Article  PubMed  CAS  Google Scholar 

  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  13. Hassan SH, Wirblich C, Forzan M, Roy P (2001) Expression and functional characterization of bluetongue virus VP5 protein: role in cellular permeabilization. J Virol 75:8356–8367

    Article  PubMed  CAS  Google Scholar 

  14. Huismans H (1979) Protein synthesis in bluetongue virus-infected cells. Virology 92:385–396

    Article  PubMed  CAS  Google Scholar 

  15. Korzeniewski C, Callewaert DM (1983) An enzyme-release assay for natural cytotoxicity. J Immunol Methods 64:313–320

    Article  PubMed  CAS  Google Scholar 

  16. Kyte J, Doolittle RF (1982) A simple method for displaying the hydrophobic character of a protein. J Mol Biol 157:105–142

    Article  PubMed  CAS  Google Scholar 

  17. Martinez-Torrecuadrada JL, Diaz-Laviada M, Roy P, Sanchez C, Vela C, Sanchez-Vizcaino JM, Casal JI (1996) Full protection against African horsesickness (AHS) in horses induced by baculovirus-derived AHS virus serotype 4 VP2, VP5 and VP7. J Gen Virol 77:1211–1221

    Article  PubMed  CAS  Google Scholar 

  18. Martinez-Torrecuadrada JL, Langeveld JPM, Venteo A, Sanz A, Dalsgaard K, Hamilton WDO, Meloen RH, Casal JI (1999) Antigenic profile of African horse sickness virus serotype 4 VP5 and identification of a neutralizing epitope shared with bluetongue virus and epizootic hemorrhagic disease virus. Virology 257:449–459

    Article  PubMed  CAS  Google Scholar 

  19. Mertens PPC, Brown F, Sangar DV (1984) Assignment of the genome segments of bluetongue virus type 1 to the proteins which they encode. Virology 135:207–217

    Article  PubMed  CAS  Google Scholar 

  20. Miller MA, Cloyd MW, Liebmann J, Rinaldo CR, Islam KR, Wang SZS, Mietzner TA, Montelaro RC (1993) Alterations in cell permeability by the lentivirus lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology 196:89–100

    Article  PubMed  CAS  Google Scholar 

  21. Miller MA, Garry RF, Jaynes JM, Montelaro RC (1991) A structural correlation between lentivirus transmembrane proteins and natural cytolytic peptides. AIDS Res Hum Retroviruses 7:511–519

    Article  PubMed  CAS  Google Scholar 

  22. Newton K, Meyer JC, Bellamy AR, Taylor JA (1997) Rotavirus nonstructural glycoprotein NSP4 alters plasma membrane permeability in mammalian cells. J Virol 71:9458–9465

    PubMed  CAS  Google Scholar 

  23. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  24. Sung JH, Shin SA, Park HK, Montelaro RC, Chong YH (2001) Protective effect of glutathione in HIV-1 lytic peptide 1-induced cell death in human neuronal cells. J Neurovirol 7:454–465

    Article  PubMed  CAS  Google Scholar 

  25. Tsai B (2007) Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol 23:23–43

    Article  PubMed  CAS  Google Scholar 

  26. Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581:2150–2155

    Article  PubMed  CAS  Google Scholar 

  27. White JM, Delos SE, Brecher M, Schornberg K (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43:189–219

    Article  PubMed  CAS  Google Scholar 

  28. Wiethoff CM, Wodrich H, Gerace L, Nemerow GR (2005) Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79:1992–2000

    Article  PubMed  CAS  Google Scholar 

  29. Zhang X, Boyce M, Bhattacharya B, Zhang X, Schein S, Roy P, Zhou ZH (2010) Bluetongue virus coat protein VP2 contains sialic acid-binding domains, and VP5 resembles enveloped virus fusion proteins. Proc Natl Acad Sci USA 107:6292–6297

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Theron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stassen, L., Huismans, H. & Theron, J. Membrane permeabilization of the African horse sickness virus VP5 protein is mediated by two N-terminal amphipathic α-helices. Arch Virol 156, 711–715 (2011). https://doi.org/10.1007/s00705-010-0897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0897-4

Keywords

Navigation