Skip to main content

Advertisement

Log in

A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We investigated the potential of Nicotiana benthamiana to express the E7 protein of human papillomavirus 8 (HPV-8), a paradigm genotype among cutaneous HPVs. The protein, modified in its putative pRb-binding domain (E7QGD), was transiently expressed in leaves following infiltration with agrobacteria carrying either a binary vector combined with silencing suppressor constructs or replicating tobacco mosaic virus (TMV)-based vectors with different targeting signals. HPV-8 E7QGD yields ranged from 250 ng to 4.6 mg per gram of fresh leaf tissue. The highest yields were obtained with TMV-based vectors targeting the antigen to the apoplast. HPV8-CER (H2q) mice transformed with the complete early region of HPV-8 showed a delay in the onset of skin papillomatous lesions and produced E7-specific immunoglobulins G when inoculated subcutaneously with leaf extracts expressing E7QGD. Furthermore, we demonstrated that the plant-made HPV-8 E7QGD induced a specific cytotoxic response in C57BL/6 (H2b) mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ma JKC, Barros E, Bock R, Christou P, Dale PJ, Dix PJ, Fischer R, Irwin J, Mahoney R, Pezzotti M, Schillberg S, Sparrow P, Stoger E, Twyman RM (2005) Molecular farming for new drugs and vaccines—current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593–599

    Article  PubMed  CAS  Google Scholar 

  2. Rybicky ED (2010) Plant-made vaccines for humans and animals. Expert Rev Vaccines 8:620–637

    Google Scholar 

  3. Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13:1796–1799

    PubMed  CAS  Google Scholar 

  4. Tacket CO, Mason HS, Losonsky G, Clements JD, Levine MM, Arntzen CJ (1998) Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med 4:607–609

    Article  PubMed  CAS  Google Scholar 

  5. Streatfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150–157

    Article  PubMed  CAS  Google Scholar 

  6. Lico C, Chen Q, Santi L (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  PubMed  CAS  Google Scholar 

  7. Ghittoni R, Accardi R, Hasan U, Gheit T, Sylla B, Tommasino M (2010) The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40:1–13

    Article  PubMed  CAS  Google Scholar 

  8. Campo MS (2006) Introduction. In: Campo MS (ed) Papillomavirus research from natural history to vaccines and beyond. Caister Academic Press, Wymonham, pp 1–2

    Google Scholar 

  9. Howley PM, Lowy DR (2007) Papillomaviruses. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott/Williams & Wilkins, Philadelphia, pp 2299–2354

    Google Scholar 

  10. rnbauer R, Lenz P, Okun MM (2008) Human papillomavirus. In: Bolognia J, Jorizzo J, Rapini R (eds) Dermatology. Mosby, London, pp 1183–1198

    Google Scholar 

  11. Rittà M, De Andrea M, Mondini M, Mazibrada J, Giordano C, Pecorari G, Garzaro M, Landolfo V, Schena M, Chiusa L, Landolfo S (2009) Cell cycle and viral and immunologic profiles of head and neck squamous cell carcinoma as predictable variables of tumor progression. Head Neck 31:318–327

    Article  PubMed  Google Scholar 

  12. Weissenborn SJ, Nindl I, Purdie K, Harwood C, Proby C, Breuer J, Majewski S, Pfister H, Wieland U (2005) Human papillomavirus-DNA loads in actinic keratoses exceed those in non-melanoma skin cancers. J Invest Dermatol 125:93

    Article  PubMed  CAS  Google Scholar 

  13. Bouwes Bavinck JN, Euvrard S, Naldi L, Nindl I, Proby CM, Neale R, Abeni D, Tessari GP, Feltkamp MC, Claudy A, Stockfleth E, Harwood CA (2007) Keratotic skin lesions and other risk factors are associated with skin cancer in organ-transplant recipients: a case–control study in The Netherlands, United Kingdom, Germany, France, and Italy. J Invest Dermatol 127:1647–1656

    PubMed  CAS  Google Scholar 

  14. Bouwes Bavinck JN, Plasmeijer EI, Feltkamp MC (2008) Beta-papillomavirus infection and skin cancer. J Invest Dermatol 128:1355–1358

    Article  PubMed  CAS  Google Scholar 

  15. Asgari MM, Kiviat NB, Critchlow CW, Stern JE, Argenyi ZB, Raugi GJ, Berg D, Odland PB, Hawes SE, de Villiers EM (2008) Detection of human papillomavirus DNA in cutaneous squamous cell carcinoma among immunocompetent individuals. J Invest Dermatol 128:1409–1417

    Article  PubMed  CAS  Google Scholar 

  16. Gormley RH, Kovarik CL (2009) Dermatologic manifestations of HPV in HIV-infected individuals. Curr HIV/AIDS Rep 6:130–138

    Article  PubMed  Google Scholar 

  17. Ateenyi-Agaba C, Franceschi S, Wabwire-Mangen F, Arslan A, Othieno E, Binta-Kahwa J, van Doorn LJ, Kleter B, Quint W, Weiderpass E (2010) Human papillomavirus infection and squamous cell carcinoma of the conjunctiva. Br J Cancer 102:262–267

    Article  PubMed  CAS  Google Scholar 

  18. Hebner CM, Laimins LA (2006) Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 16:83–97

    Article  PubMed  CAS  Google Scholar 

  19. Bouvard V, Gabet AS, Accardi R, Sylla BS, Tommasino M (2006) The cutaneous human papillomavirus types and non-melanoma skin cancer. In: Campo MS (ed) Papillomavirus research from natural history to vaccines and beyond. Caister Academic Press, Wymonham, pp 269–277

    Google Scholar 

  20. Dang C, Köhler A, Forschner T, Sehr P, Michael K, Pawlita M, Stockfleth E, Nindl I (2006) E6/E7 expression of human papillomavirus types in cutaneous squamous cell dysplasia and carcinoma in immunosuppressed organ transplant recipients. Br J Dermatol 155:129–136

    Article  PubMed  CAS  Google Scholar 

  21. Dong W, Kloz U, Accardi R, Caldeira S, Tong W, Wang Z, Jansen L, Durst M, Sylla B, Gissmann L, Tommasino M (2005) Skin hyperproliferation and susceptibility to chemical carcinogenesis in transgenic mice expressing E6 and E7 of human papillomavirus type 38. J Virol 79:14899–14908

    Article  PubMed  CAS  Google Scholar 

  22. Michel A, Kopp-Schneider A, Zentgraf H, Gruber AD, de Villiers EM (2006) E6/E7 expression of human papillomavirus type 20 (HPV-20) and HPV-27 influences proliferation and differentiation of the skin in UV-irradiated SKH-hr1 transgenic mice. J Virol 80:11153–11164

    Article  PubMed  CAS  Google Scholar 

  23. Marcuzzi GP, Hufbauer M, Kasper HU, Weissenborn SJ, Smola S, Pfister H (2009) Spontaneous tumor development in human papillomavirus type 8 E6 transgenic mice and rapid induction by UV-light exposure and wounding. J Gen Virol 90:2855–2864

    Article  PubMed  CAS  Google Scholar 

  24. Hufbauer M, Lazić D, Akgül B, Brandsma JL, Pfister H, Weissenborn SJ (2010) Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice. Virology 403:128–136

    Article  PubMed  CAS  Google Scholar 

  25. Schaper ID, Marcuzzi GP, Weissenborn SJ, Kasper HU, Dries V, Smyth N, Fuchs P, Pfister H (2005) Development of skin tumors in mice transgenic for early genes of human papillomavirus type 8. Cancer Res 65:1394–1400

    Article  PubMed  CAS  Google Scholar 

  26. Nindl I, Gottschling M, Stockfleth E (2007) Human papillomaviruses and non-melanoma skin cancer: basic virology and clinical manifestations. Dis Markers 23:247–259

    PubMed  CAS  Google Scholar 

  27. Handisurya A, Schellenbacher C, Kirnbauer R (2009) Diseases caused by human papillomaviruses (HPV). J Dtsch Dermatol Ges. 7:453–466

    PubMed  Google Scholar 

  28. Frazer IH (2004) Prevention of cervical cancer through papillomavirus vaccination. Nat Rev Immunol 4:46–54

    Article  PubMed  CAS  Google Scholar 

  29. Leggatt GR, Frazer IH (2007) HPV vaccines: the beginning of the end for cervical cancer. Curr Opin Immunol 19:232–238

    Article  PubMed  CAS  Google Scholar 

  30. Giorgi C, Franconi R, Rybicky EP (2010) Human papillomavirus vaccines in plants. Expert Rev Vaccines 8:913–924

    Article  Google Scholar 

  31. Bevan M (1984) Binary agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed  CAS  Google Scholar 

  32. Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7:182–188

    Article  PubMed  CAS  Google Scholar 

  33. Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk L, Manteuffel R (1998) Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta 206:504–514

    Article  PubMed  CAS  Google Scholar 

  34. McMaster GK, Carmichael GG (1977) Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci USA 74:4835–4838

    Article  PubMed  CAS  Google Scholar 

  35. Mastini C, Becker PD, Iezzi M, Curcio C, Musiani P, Forni G, Cavallo F, Guzman CA (2008) Intramammary application of non-methylated-CpG oligodeoxynucleotides (CpG) inhibits both local and systemic mammary carcinogenesis in female BALB/c Her-2/neu transgenic mice. Curr Cancer Drug Targets 8:230–242

    Article  PubMed  CAS  Google Scholar 

  36. Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938

    Article  PubMed  CAS  Google Scholar 

  37. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  38. Kim KI, Sunter G, Bisaro DM, Chung IS (2007) Improved expression of recombinant GFP using a replicating vector based on Beet curly top virus in leaf-disks and infiltrated Nicotiana benthamiana leaves. Plant Mol Biol 64:103–112

    Article  PubMed  CAS  Google Scholar 

  39. Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857

    Article  PubMed  CAS  Google Scholar 

  40. Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotech 18:134–141

    Article  PubMed  CAS  Google Scholar 

  41. Franconi R, Massa S, Illiano E, Mullar A, Cirilli A, Accardi L, Di Bonito P, Giorgi C, Venuti A (2006) Exploiting the plant secretory pathway to improve the anticancer activity of a plant-derived HPV16 E7 vaccine. Int J Immunopathol Pharmacol 19:187–197

    PubMed  CAS  Google Scholar 

  42. Franconi R, Di Bonito P, Dibello F, Accardi L, Muller A, Cirilli A, Simeone P, Dona MG, Venuti A, Giorgi C (2002) Plant-derived human papillomavirus 16 E7 oncoprotein induces immune response and specific tumor protection. Cancer Res 62:3654–3658

    PubMed  CAS  Google Scholar 

  43. Massa S, Franconi R, Brandi R, Muller A, Mett V, Yusibov V, Venuti A (2007) Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 25:3018–3021

    Article  PubMed  CAS  Google Scholar 

  44. Kanodia S, Fahey LM, Kast WM (2007) Mechanisms used by human papillomaviruses to escape the host immune response. Curr Cancer Drug Targets 7:79–89

    Article  PubMed  CAS  Google Scholar 

  45. Khammanivong V, Liu XS, Liu WJ, Rodda SJ, Leggatt GR, Tindle RW, Frazer IH, Fernando GJ (2003) Paucity of functional CTL epitopes in the E7 oncoprotein of cervical cancer associated human papillomavirus type 16. Immunol. Cell Biol 81:1–7

    CAS  Google Scholar 

  46. Pfister H (2003) Chapter 8: human papillomavirus and skin cancer. J Natl Cancer Inst Monogr 31:52–56

    PubMed  Google Scholar 

  47. Handisurya A, Gambhira R, Schellenbacher C, Shafti-Keramat S, Forslund O, Favre M, Kimbauer R (2009) Serological relationship between cutaneous human papillomavirus types 5, 8 and 92. J Gen Virol 90:136–143

    Article  PubMed  CAS  Google Scholar 

  48. Purdie K, Surentheran T, Sterling J, Bell L, McGregor J, Proby C, Harwood C, Breuer J (2005) Human papillomavirus gene expression in cutaneous squamous cell carcinomas from immunosuppressed and immunocompetent individuals. J Invest Dermatol 125:98–107

    Article  PubMed  CAS  Google Scholar 

  49. Orth G (2006) Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses. Semin Immunol 18:362–374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Icon Genetics for providing the TMV-based vectors. We are indebted to Drs. Marco De Andrea and Michele Mondini for their contribution in producing the anti GST-E7 rabbit serum, to Mrs. Manuela Vecchiati for plant care and to Prof. Guido Forni for helpful advice. This work was supported by Ricerca Sanitaria Finalizzata, Regione Piemonte, Italy, and by the EU FP7 “PLAPROVA” project (Grant Agreement No. KBBE-227056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Noris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noris, E., Poli, A., Cojoca, R. et al. A human papillomavirus 8 E7 protein produced in plants is able to trigger the mouse immune system and delay the development of skin lesions. Arch Virol 156, 587–595 (2011). https://doi.org/10.1007/s00705-010-0893-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0893-8

Keywords

Navigation