Skip to main content
Log in

Complete nucleotide sequence of capsicum chlorosis virus isolated from Phalaenopsis orchid and the prediction of the unexplored genetic information of tospoviruses

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Phalaenopsis orchids are popular ornamentals all over the world. A tospovirus, capsicum chlorosis virus (CaCV-Ph) had been identified as the cause of chlorotic ringspots on leaves of Phalaenopsis orchids in Taiwan. The tripartite genome of CaCV-Ph was found to contain 3608, 4848 and 8916 nt of S, M and L RNAs, respectively. Phylogenetic analysis of the nucleocapsid (N) protein confirmed that CaCV-Ph is a member of the watermelon silver mottle virus (WSMoV) serogroup in the genus Tospovirus. Based on the relations among the nonstructural protein (NSs), glycoprotein (GnGc), thrips genera, host and geographical distribution, tospoviruses and thrips could be classified into two major types: WSMoV-Thrips-Asian and Tomato spotted wilt virus (TSWV)-Frankliniella-EuroAmerican. The proline (P459) of all tospoviral Gn proteins was indispensable for thrips transmission, but the RGD motif, which is maintained by only six tospoviruses, may not be required for thrips transmission. An RdRp catalytic domain found in the conserved region of the L protein may recognize the typically conserved sequences on the 5’ and 3’ terminal regions (5’ AGAGCAAU 3’).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bairoch A, Bucher P (1994) PROSITE: recent developments. Nucleic Acids Res 22:3583–3589

    Article  PubMed  CAS  Google Scholar 

  2. Baker CA, Davison D, Jones L (2007) Impatiens necrotic spot virus and Tomato spotted wilt virus diagnosed in Phalaenopsis orchids from two Florida nurseries. Plant Dis 91:1515

    Article  Google Scholar 

  3. Bandla MD, Campbell LR, Ullman DE, Sherwood JL (1998) Interaction of tomato spotted wilt tospovirus (TSWV) glycoproteins with a thrips midgut protein, a potential cellular receptor for TSWV. Phytopathology 88:98–104

    Article  PubMed  CAS  Google Scholar 

  4. Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  5. Bayne EH, Rakitina DV, Morozov SY, Baulcombe D (2005) Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. Plant J 44:471–482

    Article  PubMed  CAS  Google Scholar 

  6. Black LM, Brakke MK, Vatter AE (1963) Purification and electron microscopy of tomato spotted wilt virus. Virology 20:120–130

    Article  PubMed  CAS  Google Scholar 

  7. Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746

    Article  PubMed  CAS  Google Scholar 

  8. Brodsky LI, Ivanov VV, Kalaidzidis YL, Leontovich AM, Nikolaev VK, Feranchuk SI, Drachev VA (1995) GeneBee-NET: internet-based server for analyzing biopolymers structure. Biochemistry 60:923–928

    Google Scholar 

  9. Brodsky LI, Vasiliev AV, Kalaidzidis YL, Osipov YS, Tatuzov RL, Feranchuk SI (1992) GeneBee: the program package for biopolymer structure analysis. Dimacs 8:127–139

    Google Scholar 

  10. Bucher E, Sijen T, de Haan P, Goldbach R, Prins M (2003) Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J Virol 77:1329–1336

    Article  PubMed  CAS  Google Scholar 

  11. Chen CC, Chen TC, Lin YH, Yeh SD, Hsu HT (2005) A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to Watermelon silver mottle virus. Plant Dis 89:440–445

    Article  CAS  Google Scholar 

  12. Chen K, Xu Z, Yan L, Wang G (2007) Characterization of a new strain of Capsicum chlorosis virus from peanut (Arachis hypogaea L.) in China. J Phytopathol 155:178–181

    Article  CAS  Google Scholar 

  13. Chen TC, Huang CW, Kuo YW, Liu FL, Hsuan Yuan CH, Hsu HT, Yeh SD (2006) Identification of common epitopes on a conserved region of NSs proteins among tospoviruses of Watermelon silver mottle virus serogroup. Phytopathology 96:1296–1304

    Article  PubMed  CAS  Google Scholar 

  14. Chu FH, Chao CH, Chung MH, Chen CC, Yeh SD (2001) Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 91:361–368

    Article  PubMed  CAS  Google Scholar 

  15. Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 79:35–71

    Article  Google Scholar 

  16. Ghotbi T, Shahraeen N, Winter S (2005) Occurrence of tospoviruses in ornamental and weed species in Markazi and Tehran provinces in Iran. Plant Dis 89:425–429

    Article  Google Scholar 

  17. Hassani-Mehraban A, Botermans M, Verhoeven JT, Meekes E, Saaijer J, Peters D, Goldbach R, Kormelink R (2010) A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia. Arch Virol 155:423–428

    Article  PubMed  CAS  Google Scholar 

  18. Hu JS, Ferreira S, Wang M, Xu MQ (1993) Detection of Cymbidium mosaic virus, Odontoglossum ringspot virus, tomato spotted wilt virus, and potyviruses infecting orchids in Hawaii. Plant Dis 77:464–468

    Article  Google Scholar 

  19. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJA (2006) The PROSITE database. Nucleic Acids Res 34:D227–D230

    Article  PubMed  CAS  Google Scholar 

  20. Jones DR (2005) Plant viruses transmitted by thrips. Eur J Plant Pathol 113:119–157

    Article  Google Scholar 

  21. Kang YC, Yeh SD, Chen TC (2009) Production of broad-spectrum antisera for detection of tospoviruses. Plant Pathol Bull 18:94–95

    Google Scholar 

  22. Kasschau KD, Carrington JC (1998) A counter-defensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95:461–470

    Article  PubMed  CAS  Google Scholar 

  23. Kikkert M, Meurs C, van de Wetering F, Dorfmuller S, Peters D, Kormelink R, Goldbach R (1998) Binding of tomato spotted wilt virus to a 94-kDa thrips protein. Phytopathology 88:63–69

    Article  PubMed  CAS  Google Scholar 

  24. Knierim D, Blawid R, Maiss E (2006) The complete nucleotide sequence of a capsicum chlorosis virus isolate from Lycopersicum esculentum in Thailand. Arch Virol 151:1761–1782

    Article  PubMed  CAS  Google Scholar 

  25. Kormelink R, de Haan P, Meurs C, Peters D, Goldbach R (1992) The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol 73:2795–2804

    Article  PubMed  CAS  Google Scholar 

  26. Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R (1994) Expression and subcellular location of the NSm protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56–65

    Article  PubMed  CAS  Google Scholar 

  27. Lawson RH, Hsu HT (1995) Orchid. In: Loebenstein G, Lawson RH, Brunt AA (eds) Virus and virus-like diseases of bulb and flower crops. Wiley, West Sussex, pp 409–420

    Google Scholar 

  28. Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acid Res 34:D257–D260

    Article  PubMed  CAS  Google Scholar 

  29. McMichael LA, Persley DM, Thomas JE (2002) A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Aust Plant Pathol 31:231–239

    Article  Google Scholar 

  30. Medeiros RB, Ullman DE, Sherwood JL, German TL (2000) Immunoprecipitation of a 50-kDa protein: a candidate receptor component for a tomato spotted wilt tospovirus (Bunyaviridae) in its main vector, Franklinella occidentalis. Virus Res 67:109–118

    Article  PubMed  CAS  Google Scholar 

  31. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavages sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  32. Pang SZ, Slightom JL, Gonsalves D (1993) The biological properties of a distinct tospovirus and sequence analysis of its S RNA. Phytopathology 83:728–733

    Article  CAS  Google Scholar 

  33. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    Article  PubMed  CAS  Google Scholar 

  34. Pongsapich P, Chiemsombat P (2002) Characterization of tospovirus infecting tomatoes in Thailand revealed the presence of serogroup IV-tospovirus but not serogroup I-tomato spotted wilt virus. In: Proceedings of the 1st International Conference on Tropical and Subtropical Plant Diseases, November 5–8, 2002, Chiang Mai Thailand (Summary, p 92)

  35. Qiu W, Park JW, Scholthof HB (2002) Tombusvirus P19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol Plant-Microbe Interact 15:269–280

    Article  PubMed  CAS  Google Scholar 

  36. Qu F, Ren T, Morris TJ (2003) The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77:511–522

    Article  PubMed  CAS  Google Scholar 

  37. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: Identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  38. Silva MS, Martins CRF, Bezerra IC, Nagata T, de Ávila AC, Resende RO (2001) Sequence diversity of NSm movement protein of tospoviruses. Arch Virol 146:1267–1281

    Article  PubMed  CAS  Google Scholar 

  39. Sin SH, McNulty BC, Kennedy GG, Moyer JW (2005) Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc Natl Acad Sci USA 102:5168–5173

    Article  PubMed  CAS  Google Scholar 

  40. Storms MMH, Kormelink R, Peters D, van Lent JWM, Goldbach RW (1995) The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493

    Article  PubMed  CAS  Google Scholar 

  41. Storms MMH, van der Schoot C, Prins M, Kormelink R, van Lent JWM, Goldbach RW (1998) A comparison of two methods of microinjection for assessing altered plasmodesmal gating in tissues expressing viral movement proteins. Plant J 13:131–140

    Article  CAS  Google Scholar 

  42. Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331

    Article  PubMed  CAS  Google Scholar 

  43. Takeda A, Sugiyama K, Nagano H, Mori M, Kaido M, Mise K, Tsuda S, Okuno T (2002) Identification of a novel RNA silencing suppressor, NSs protein of Tomato spotted wilt virus. FEBS Lett 532:75–79

    Article  PubMed  CAS  Google Scholar 

  44. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  45. Valverde RA, Dodds JA, Heick JA (1986) Double-stranded RNA from plants infected with viruses having elongated particles and undivided genomes. Phytopathology 76:459–465

    Article  CAS  Google Scholar 

  46. van Kammen A, Henstra S, Le TS (1966) Morphology of tomato spotted wilt virus. Virology 30:574–577

    Article  PubMed  Google Scholar 

  47. Whitfield AE, Ullman DE, German TL (2005) Tospovirus–thrips interactions. Annu Rev Phytopathol 43:459–489

    Article  PubMed  CAS  Google Scholar 

  48. Yelina NE, Savenkov EI, Solovyev AG, Morozov SY, Valkonen JP (2002) Long-distance movement, virulence, and RNA silencing suppression controlled by a single protein in hordei- and potyviruses: complementary functions between virus families. J Virol 76:12981–12991

    Article  PubMed  CAS  Google Scholar 

  49. Zheng YX, Chen CC, Yang CJ, Yeh SD, Jan FJ (2008) Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur J Plant Pathol 120:199–209

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Wen-Hsiung Ko, Professor Emeritus of the University of Hawaii at Manoa and Dr. Chung-Jan Chang, Professor of the University of Georgia at Griffin for their critical review of this manuscript. We also thank Dr. Shyi-Dong Yeh for valuable discussions. This work was supported by grants (NSC94-2313-B-005-003; NSC98-2811-B-005-029) from the National Science Council, Executive Yuan, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuh-Jyh Jan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, YX., Chen, CC. & Jan, FJ. Complete nucleotide sequence of capsicum chlorosis virus isolated from Phalaenopsis orchid and the prediction of the unexplored genetic information of tospoviruses. Arch Virol 156, 421–432 (2011). https://doi.org/10.1007/s00705-010-0874-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0874-y

Keywords