Skip to main content

Advertisement

Log in

The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We have modeled a 3D structure for the C-type lectin domain of the African swine fever virus protein EP153R, based on the structure of CD69, CD94 and Ly49A cell receptors, and this model predicts that a dimer of EP153R may establish an asymmetric interaction with one MHC-I molecule. A functional consequence of this interaction could be the modulation of MHC-I expression. By using both transfection and virus infection experiments, we demonstrate here that EP153R inhibits MHC-I membrane expression, most probably by impairing the exocytosis process, without affecting the synthesis or glycosylation of MHC antigens. Interestingly, the EP153-mediated control of MHC requires the intact configuration of the lectin domain of the viral protein, and specifically the R133 residue. Interference of EP153R gene expression during virus infection and studies using virus recombinants with the EP153R gene deleted further support the inhibitory role of the viral lectin on the expression of MHC-I antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926

    Article  CAS  PubMed  Google Scholar 

  2. Lin A, Xu H, Yan W (2007) Modulation of hla expression in human cytomegalovirus immune evasion. Cell Mol Immunol 4(2):91–98

    PubMed  Google Scholar 

  3. Tulman ER, Delhon GA, Ku BK, Rock DL (2009) African swine fever virus. Curr Top Microbiol Immunol 328:43–87

    Article  CAS  PubMed  Google Scholar 

  4. Hurtado C, Granja AG, Bustos MJ, Nogal ML, Gonzalez de Buitrago G, de Yebenes VG, Salas ML, Revilla Y, Carrascosa AL (2004) The c-type lectin homologue gene (ep153r) of african swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology 326(1):160–170

    Article  CAS  PubMed  Google Scholar 

  5. Boyington JC, Riaz AN, Patamawenu A, Coligan JE, Brooks AG, Sun PD (1999) Structure of cd94 reveals a novel c-type lectin fold: Implications for the nk cell-associated cd94/nkg2 receptors. Immunity 10(1):75–82

    Article  CAS  PubMed  Google Scholar 

  6. Tormo J, Natarajan K, Margulies DH, Mariuzza RA (1999) Crystal structure of a lectin-like natural killer cell receptor bound to its mhc class i ligand. Nature 402(6762):623–631

    Article  CAS  PubMed  Google Scholar 

  7. Llera AS, Viedma F, Sanchez-Madrid F, Tormo J (2001) Crystal structure of the c-type lectin-like domain from the human hematopoietic cell receptor cd69. J Biol Chem 276(10):7312–7319

    Article  CAS  PubMed  Google Scholar 

  8. Weingartl HM, Sabara M, Pasick J, van Moorlehem E, Babiuk L (2002) Continuous porcine cell lines developed from alveolar macrophages: Partial characterization and virus susceptibility. J Virol Methods 104(2):203–216

    Article  CAS  PubMed  Google Scholar 

  9. Carrascosa AL, Santaren JF, Vinuela E (1982) Production and titration of african swine fever virus in porcine alveolar macrophages. J Virol Methods 3(6):303–310

    Article  CAS  PubMed  Google Scholar 

  10. Enjuanes L, Carrascosa AL, Moreno MA, Vinuela E (1976) Titration of african swine fever (asf) virus. J Gen Virol 32(3):471–477

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Barreno B, Sanz A, Nogal ML, Vinuela E, Enjuanes L (1986) Monoclonal antibodies of african swine fever virus: Antigenic differences among field virus isolates and viruses passaged in cell culture. J Virol 58(2):385–392

    CAS  PubMed  Google Scholar 

  12. Salguero FJ, Gil S, Revilla Y, Gallardo C, Arias M, Martins C (2008) Cytokine mrna expression and pathological findings in pigs inoculated with african swine fever virus (e-70) deleted on a238 l. Vet Immunol Immunopathol 124(1–2):107–119

    Article  CAS  PubMed  Google Scholar 

  13. Hurtado C, Bustos MJ, Carrascosa AL (2010) The use of cos-1 cells for studies of field and laboratory african swine fever virus samples. J Virol Methods 164(1–2):131–134

    Article  CAS  PubMed  Google Scholar 

  14. Galindo I, Almazán F, Bustos MJ, Viñuela E, Carrascosa AL (2000) African swine fever virus ep153r open reading frame encodes a glycoprotein involved in the hemadsorption of infected cells. Virology 266(2):340–351

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez JM, Almazan F, Vinuela E, Rodriguez JF (1992) Genetic manipulation of african swine fever virus: Construction of recombinant viruses expressing the beta-galactosidase gene. Virology 188(1):67–76

    Article  CAS  PubMed  Google Scholar 

  16. Barnstable CJ, Bodmer WF, Brown G, Galfre G, Milstein C, Williams AF, Ziegler A (1978) Production of monoclonal antibodies to group a erythrocytes, hla and other human cell surface antigens-new tools for genetic analysis. Cell 14(1):9–20

    Article  CAS  PubMed  Google Scholar 

  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  PubMed  Google Scholar 

  18. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal w: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  Google Scholar 

  19. Notredame C, Higgins DG, Heringa J (2000) T-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217

    Article  CAS  PubMed  Google Scholar 

  20. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the web: A case study using the phyre server. Nat Protoc 4(3):363–371

    Article  CAS  PubMed  Google Scholar 

  21. Kelley LA, MacCallum RM, Sternberg MJ (2000) Enhanced genome annotation using structural profiles in the program 3d-pssm. J Mol Biol 299(2):499–520

    Article  CAS  PubMed  Google Scholar 

  22. Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2004) Scop database in 2004: Refinements integrate structure and sequence family data. Nucleic Acids Res 32 (Database issue):D226-229

  23. Holm L, Park J (2000) Dalilite workbench for protein structure comparison. Bioinformatics 16(6):566–567

    Article  CAS  PubMed  Google Scholar 

  24. Velloso LM, Michaelsson J, Ljunggren HG, Schneider G, Achour A (2004) Determination of structural principles underlying three different modes of lymphocytic choriomeningitis virus escape from ctl recognition. J Immunol 172(9):5504–5511

    CAS  PubMed  Google Scholar 

  25. Guex N, Diemand A, Peitsch MC (1999) Protein modelling for all. Trends Biochem Sci 24(9):364–367

    Article  CAS  PubMed  Google Scholar 

  26. Peitsch MC (1996) Promod and swiss-model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24(1):274–279

    CAS  PubMed  Google Scholar 

  27. Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-model: An automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385

    Article  CAS  PubMed  Google Scholar 

  28. Radaev S, Rostro B, Brooks AG, Colonna M, Sun PD (2001) Conformational plasticity revealed by the cocrystal structure of nkg2d and its class i mhc-like ligand ulbp3. Immunity 15(6):1039–1049

    Article  CAS  PubMed  Google Scholar 

  29. Guex N, Peitsch MC (1997) Swiss-model and the swiss-pdbviewer: An environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  CAS  PubMed  Google Scholar 

  30. Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. Embo J 9(10):3153–3162

    CAS  PubMed  Google Scholar 

  31. Deng L, Cho S, Malchiodi EL, Kerzic MC, Dam J, Mariuzza RA (2008) Molecular architecture of the major histocompatibility complex class i-binding site of ly49 natural killer cell receptors. J Biol Chem 283(24):16840–16849

    Article  CAS  PubMed  Google Scholar 

  32. Kaiser BK, Pizarro JC, Kerns J, Strong RK (2008) Structural basis for nkg2a/cd94 recognition of hla-e. Proc Natl Acad Sci U S A 105(18):6696–6701

    Article  CAS  PubMed  Google Scholar 

  33. Neilan JG, Borca MV, Lu Z, Kutish GF, Kleiboeker SB, Carrillo C, Zsak L, Rock DL (1999) An african swine fever virus orf with similarity to c-type lectins is non-essential for growth in swine macrophages in vitro and for virus virulence in domestic swine. J Gen Virol 80(Pt 10):2693–2697

    CAS  PubMed  Google Scholar 

  34. Everett MW, Edidin M (2007) Tapasin increases efficiency of mhc i assembly in the endoplasmic reticulum but does not affect mhc i stability at the cell surface. J Immunol 179(11):7646–7652

    CAS  PubMed  Google Scholar 

  35. Popescu CI, Paduraru C, Dwek RA, Petrescu SM (2005) Soluble tyrosinase is an endoplasmic reticulum (er)-associated degradation substrate retained in the er by calreticulin and bip/grp78 and not calnexin. J Biol Chem 280(14):13833–13840

    Article  CAS  PubMed  Google Scholar 

  36. Bennett EM, Bennink JR, Yewdell JW, Brodsky FM (1999) Cutting edge: Adenovirus e19 has two mechanisms for affecting class i mhc expression. J Immunol 162(9):5049–5052

    CAS  PubMed  Google Scholar 

  37. Ruiz Gonzalvo F, Carnero ME, Caballero C, Martinez J (1986) Inhibition of african swine fever infection in the presence of immune sera in vivo and in vitro. Am J Vet Res 47(6):1249–1252

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Begoña Galocha for experimental help and discussions. We also thank Biomol-Informatics SL (www.biomol-informatics.com) for bioinformatics consulting. This work was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (BFU2007-63110/BMC), from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement KBBE- 211691- ASFRISK and from Laboratorios del Dr. Esteve, SA, and also by institutional grants from the Fundación Ramón Areces and Banco Santander Central Hispano. C.H. and A.G.G. also acknowledge financial support from the Centro de Investigación en Sanidad Animal (CISA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel L. Carrascosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurtado, C., Bustos, M.J., Granja, A.G. et al. The African swine fever virus lectin EP153R modulates the surface membrane expression of MHC class I antigens. Arch Virol 156, 219–234 (2011). https://doi.org/10.1007/s00705-010-0846-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0846-2

Keywords

Navigation