Skip to main content

Advertisement

Log in

Detection of infectious myonecrosis virus in penaeid shrimps using immunoassays: usefulness of monoclonal antibodies directed to the viral major capsid protein

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Despite the economic impact of the infectious myonecrosis virus (IMNV) on shrimp farms in several countries, no method for immunological detection is currently available. With the aim of developing immunodiagnostic methods for IMNV detection in infected shrimps, a recombinant fragment of the IMNV major capsid protein gene encoding amino acids 105–297 (rIMNV105–297) was heterologously expressed in Escherichia coli and used to immunize Balb/c mice, generating monoclonal antibodies (MAbs). Six hybridomas were obtained, and four of these recognized the presence of IMNV in tissue homogenates from naturally infected shrimps by immunodot blot assay. Among these MAbs, three were able to detect a ~100-kDa protein, which corresponds to the predicted mass of the IMNV major capsid protein, as well as viral inclusion bodies in muscle fibroses by western blot and immunohistochemistry. Two MAbs showed high specificity and sensitivity, showing no cross-reaction with healthy shrimp tissues in any assays, indicating their usefulness for IMNV detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. FAO Fisheries Department (2006) State of world aquaculture 2006, FAO Fisheries technical paper no. 500, Rome, p 134

  2. Lightner DV (1999) The penaeid shrimp viruses TSV, IHHNV, WSSV and YHV: current status in the Americas, available diagnostic methods, and management strategies. J Appl Aquac 9:27–52

    Article  Google Scholar 

  3. Nunes AJP, Martins PCC, Gesteira TCV (2004) Carcinicultura ameaçada: produtores sofrem com as mortalidades decorrentes do vírus da mionecrose infecciosa (IMNV). Rev Panoram Aquic 14:37–51

    Google Scholar 

  4. Poulos BT, Tang KFJ, Pantoja CR, Bonami JR, Lightner DV (2006) Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J Gen Virol 87:987–996

    Article  CAS  PubMed  Google Scholar 

  5. Nibert ML (2007) ‘2A-like’ and ‘shifty heptamer’ motifs in penaeid shrimp infectious myonecrosis virus, a monosegmented double-stranded RNA virus. J Gen Virol 88:1315–1318

    Article  CAS  PubMed  Google Scholar 

  6. Tang J, Ochoa WF, Sinkovits RS, Poulos BT, Ghabrial SA, Lightner DV, Baker TS, Nibert ML (2008) Infectious myonecrosis virus has a totivirus-like, 120-subunit capsid, but with fiber complexes at the fivefold axes. Proc Natl Acad Sci USA 105:17526–17531

    Article  CAS  PubMed  Google Scholar 

  7. Lightner DV, Pantoja CR, Tang KFJ, Redman RM, Pasos-de-Andrade T, Bonami JR (2004) Infectious myonecrosis, new disease in pacific white shrimp. Glob Aquac Advocate 7:85

    Google Scholar 

  8. Flegel TW (2006) The special danger of viral pathogens in shrimp translocated for aquaculture. Sci Asia 32:215–231

    Article  Google Scholar 

  9. Andrade TPD, Srisuvan T, Tang KFJ, Lightner DV (2007) Real-time reverse transcription polymerase chain reaction assay using TaqMan probe for detection and quantification of infectious myonecrosis virus (IMNV). Aquaculture 264:9–15

    Article  CAS  Google Scholar 

  10. Silva VA, Dos Santos FL, Bezerra SS, Pedrosa VF, Mendes PD, Mendes ES (2010) A multi-season survey for infectious myonecrosis in farmed shrimp, Litopenaeus vannamei, in Pernambuco, Brazil. J Invertebr Pathol 104:161–165

    Article  PubMed  Google Scholar 

  11. Pinheiro ACAS, Lima APS, de Souza ME, Neto ECL, Adrião M, Gonçalves VSP, Coimbra MRM (2007) Epidemiological status of Taura syndrome and infectious myonecrosis viruses in Penaeus vannamei reared in Pernambuco (Brazil). Aquaculture 262:17–22

    Article  Google Scholar 

  12. Senapin S, Phewsaiya K, Briggs M, Flegel TW (2007) Outbreaks of infectious myonecrosis virus (IMNV) in Indonesia confirmed by genome sequencing and use of an alternative RT-PCR detection method. Aquaculture 266:32–38

    Article  CAS  Google Scholar 

  13. Tang KFJ, Pantoja CR, Poulos BT, Redman RM, Lightner DV (2005) In situ hybridization demonstrates that Litopenaeus vannamei, L. stylirostris and Penaeus monodon are susceptible to experimental infection with infectious myonecrosis virus (IMNV). Dis Aquat Organ 63:261–265

    Article  PubMed  Google Scholar 

  14. Poulos BT, Lightner DV (2006) Detection of infectious myonecrosis virus (IMNV) of penaeid shrimp by reverse-transcriptase polymerase chain reaction (RT-PCR). Dis Aquat Organ 73:69–72

    Article  CAS  PubMed  Google Scholar 

  15. Puthawibool T, Senapin S, Kiatpathomchai W, Flegel TW (2009) Detection of shrimp infectious myonecrosis virus by reverse transcription loop-mediated isothermal amplification combined with a lateral flow dipstick. J Virol Methods 156:27–31

    Article  CAS  PubMed  Google Scholar 

  16. Sithigorngul P, Hajimasalaeh W, Longyant S, Sridulyakul P, Rukpratanporn S, Chaivisuthagkura P (2009) Simple immunoblot and immunohistochemical detection of Penaeus stylirostris densovirus using monoclonal antibodies to viral capsid protein expressed heterologously. J Virol Methods 162:126–132

    Article  CAS  PubMed  Google Scholar 

  17. Chaivisuthangkura P, Longyant S, Hajimasalaeh W, Sridulyakul P, Rukpratanporn S, Sithigorngul P (2010) Improved sensitivity of Taura syndrome virus immunodetection with a monoclonal antibody against the recombinant VP2 capsid protein. J Virol Methods 163:433–439

    Article  CAS  PubMed  Google Scholar 

  18. Chaivisuthangkura P, Longyant S, Rukpratanporn S, Srisuk C, Sridulyakul P, Sithigorngul P (2010) Enhanced white spot syndrome virus (WSSV) detection sensitivity using monoclonal antibody specific to heterologously expressed VP19 envelope protein. Aquaculture 299:15–20

    Article  CAS  Google Scholar 

  19. Sithigorngul W, Rukpratanporn S, Sittidilokratna N, Pecharaburanin N, Longyant S, Chaivisuthangkura P, Sithigorngul P (2007) A convenient immunochromatographic test strip for rapid diagnosis of yellow head virus infection in shrimp. J Virol Methods 140:193–199

    Article  CAS  PubMed  Google Scholar 

  20. Powell JWB, Burge EJ, Browdy CL, Shepard EF (2006) Efficiency and sensitivity determination of ShrimpleR, an immunochromatographic assay for white spot syndrome virus (WSSV), using quantitative real-time PCR. Aquaculture 257:167–172

    Article  CAS  Google Scholar 

  21. Sithigorngul W, Rukpratanporn S, Pecharaburanin N, Longyant S, Chaivisuthangkura P, Sithigorngul P (2006) A simple and rapid immunochromatographic test strip for detection of white spot syndrome virus (WSSV) of shrimp. Dis Aquat Organ 72:101–106

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Zhan W (2006) Developmental of an immunochromatographic test to detect white spot syndrome virus of shrimp. Aquaculture 255:196–200

    Article  CAS  Google Scholar 

  23. Okumura T, Nagai F, Yamamoto S, Oomura H, Inouye K, Ito M, Sawada H (2005) Detection of white spot syndrome virus (WSSV) from hemolymph of Penaeid shrimps Penaeus japonicus by reverse passive latex agglutination assay using high-density latex particles. J Virol Methods 124:143–148

    Article  CAS  PubMed  Google Scholar 

  24. Ewing B, Hillier L, Wendl MC, Green P (1998) Based-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  27. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  CAS  PubMed  Google Scholar 

  28. Yokoyama WM, Christensen M, dos Santos G, Miller D (2006) Production of monoclonal antibodies. Curr Protoc Immunol 74:2.5.1–2.5.25

    Google Scholar 

  29. Andrade TPD, Redman RM, Lightner DV (2008) Evaluation of the reservation of shrimp samples with Davidson’s AFA fixative for infectious myonecrosis virus (IMNV) in situ hybridization. Aquaculture 278:179–183

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from International Foundation for Science (IFS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Ministério da Agricultura, Pecuária e Abastecimento (MAPA), and Financiadora de Estudos e Projetos (FINEP).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aguinaldo R. Pinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borsa, M., Seibert, C.H., Rosa, R.D. et al. Detection of infectious myonecrosis virus in penaeid shrimps using immunoassays: usefulness of monoclonal antibodies directed to the viral major capsid protein. Arch Virol 156, 9–16 (2011). https://doi.org/10.1007/s00705-010-0810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0810-1

Keywords

Navigation