Skip to main content
Log in

Analysis of complete genomic sequences of isolates of the Sweet potato feathery mottle virus strains C and EA: molecular evidence for two distinct potyvirus species and two P1 protein domains

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The complete nucleotide sequence of the isolate C1 of Sweet potato feathery mottle virus (SPFMV) strain C and the 5′ region of several other strains were determined and analyzed together with the sequences of isolates representing the EA, RC and O strains. This provided molecular evidence for the reclassification of SPFMV strains into two species and the occurrence of a complex recombinant isolate. Analysis also revealed a hypervariable domain in the P1 protein, which separates an N-terminal region unique to SPFMV and members of the ipomovirus species Sweet potato mild mottle virus from the C-terminal protease domain, which is conserved among all potyviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Adams MJ, Antoniw JF, Fauquet CM (2005) Molecular criteria for genus and species discrimination within the family Potyviridae. Arch Virol 150:459–479

    Article  CAS  PubMed  Google Scholar 

  2. Gallie DR, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucleic Acids Res 20:4631–4638

    Article  CAS  PubMed  Google Scholar 

  3. Karyeija RF, Kreuze JF, Gibson RW, Valkonen JPT (2000) Synergistic interactions of a potyvirus and a phloem limited crinivirus in sweetpotato plants. Virology 269:26–36

    Article  CAS  PubMed  Google Scholar 

  4. Kennedy GG, Moyer JW (1982) Aphid transmission and separation of two strains of SPFMV from sweet potato. J Econ Entomol 75:130–133

    Google Scholar 

  5. Kreuze JF, Karyeija RF, Gibson RW, Valkonen JPT (2000) Comparison of coat protein gene sequences show that East African isolates of Sweet potato feathery mottle virus form a genetically distinct group. Arch Virol 145:567–574

    Article  CAS  PubMed  Google Scholar 

  6. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7

    Article  CAS  PubMed  Google Scholar 

  7. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  CAS  PubMed  Google Scholar 

  8. Mukasa SB, Tairo F, Kreuze JF, Kullaya A, Rubaihayo PR, Valkonen JPT (2003) Coat protein sequence analysis reveals occurrence of distinct strains of SPFMV in Uganda and Tanzania. Virus Genes 27:49–56

    Article  CAS  PubMed  Google Scholar 

  9. Tairo F, Jones RAC, and Valkonen JPT (2006) Potyvirus complexes in sweetpotato: Occurrence in Australia, serological and molecular resolution, and analysis of the Sweet potato virus 2 (SPV2) component. Plant Dis 90:1120–1128

    Article  CAS  Google Scholar 

  10. Tairo F, Mukasa SB, Jones RAC, Kullaya A, Rubaihayo PR, Valkonen JPT (2005) Unravelling the genetic diversity of the three main viruses involved in sweet potato virus disease (SPVD) and its implications. Mol Plant Pathol 6:199–211

    Article  CAS  PubMed  Google Scholar 

  11. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  12. Tordo M, Chachulska AM, Fakhfakh H, Le Romancer M, Robaglia C, Astier-Manifacier S (1995) Sequence polymorphism in the 5′NTR and in the P1 coding region of potato virus Y genomic RNA. J Gen Virol 76:939–949

    Article  CAS  PubMed  Google Scholar 

  13. Untiveros M, Fuentes S, Kreuze JF (2008) Molecular variability of sweet potato feathery mottle virus and other potyviruses infecting sweet potato in Peru. Arch Virol 153:473–483

    Article  CAS  PubMed  Google Scholar 

  14. Usugi T, Nakano M, Onuki M, Maoka T, Hayashi T (1994) A new strain of Sweet potato feathery mottle virus that causes russet crack on fleshy roots of some Japanese cultivars of sweetpotato. Ann Phytopathol Soc Jpn 60:545–554

    Google Scholar 

  15. Valli A, López-Moya JJ, García JA (2007) Recombination and gene duplication in the evolutionary diversification of P1 proteins in the family Potyviridae. J Gen Virol 88:1016–1028

    Article  CAS  PubMed  Google Scholar 

  16. Yamasaki S, Sakai J, Kamisoyama S, Goto H, Okuda M, Hanada K (2009) Control of russet crack disease in sweetpotato plants using a protective mild strain of Sweet potato feathery mottle virus. Plant Dis 93:190–194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Belgium Directorate General for Development Cooperation and the Howard Buffet Foundation is gratefully acknowledged. We thank Segundo Fuentes for providing information regarding the C1 strain and suggestion of a new virus name, and Jean Ndirigue and Michel Twizeye for sharing SPFMV-infected sweet potato samples from Rwanda and Burundi, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kreuze.

Additional information

M. Untiveros and D. Quispe have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Untiveros, M., Quispe, D. & Kreuze, J. Analysis of complete genomic sequences of isolates of the Sweet potato feathery mottle virus strains C and EA: molecular evidence for two distinct potyvirus species and two P1 protein domains. Arch Virol 155, 2059–2063 (2010). https://doi.org/10.1007/s00705-010-0805-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0805-y

Keywords

Navigation