Skip to main content
Log in

Identification of an intergenic region that is not essential for replication of goatpox virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A recombinant goatpox virus was constructed in which an enhanced green fluorescent protein gene was inserted under the control of the 11K late promoter, a guanine phosphoribosyltransferase gene was inserted under the control of the 7.5K early/late promoter, and exogenous genes were inserted into an intergenic region between loci gp_24 and gp_24.5 of the recombinant genome. Analysis of protein expression showed that LT cells infected with only the recombinant virus produced specific fluorescence. A comparative growth assay demonstrated the stability of the recombinant virus at the replication level. These results suggest that the intergenic region is not essential for replication of goatpox virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Appleyard G, Hapel AJ, Boulter EA (1971) An antigenic difference between intracellular and extracellular rabbitpox virus. J Gen Virol 13:9–17

    Article  CAS  PubMed  Google Scholar 

  2. Babiuk S, Parkyn G, Copps J, Larence JE, Sabara MI, Bowden TR, Boyle DB, Kitching RP (2007) Evaluation of an ovine testis cell line (OA3.Ts) for propagation of capripoxvirus isolates and development of an immunostaining techniques for viral plaque visualization. J Vet Diagn Invest 19:486–491

    PubMed  Google Scholar 

  3. Berhe G, Minet C, Le Goff C, Barrett T, Ngangnou A, Grillet C, Libeau G, Fleming M, Black DN, Diallo A (2003) Development of a dual recombinant vaccine to protect small ruminants against peste-des-petits-ruminants virus and capripoxvirus infections. J Virol 77:1571–1577

    Article  CAS  PubMed  Google Scholar 

  4. Bertholet C, Drillien R, Wittek R (1985) One hundred base pairs of 5′ flanking sequence of a vaccinia virus late gene are sufficient to temporally regulate late transcription. Proc Natl Acad Sci USA 82:2096–2100

    Article  CAS  PubMed  Google Scholar 

  5. Bleckwenn NA, Bentley WE, Shiloach J (2003) Exploring vaccinia virus as a tool for large-scale recombinant protein expression. Biotechnol Prog 19:130–136

    Article  CAS  PubMed  Google Scholar 

  6. Borrego B, Lorenzo MM, Blasco R (1999) Complementation of P37 (F13L gene) knock-out in vaccinia virus by a cell line expressing the gene constitutively. J Gen Virol 80:425–432

    CAS  PubMed  Google Scholar 

  7. Chakrabarti S, Sisler JR, Moss B (1997) Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 23:1094–1097

    CAS  PubMed  Google Scholar 

  8. Cochran MA, Puckett C, Moss B (1985) In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and late regulatory signals. J Virol 54:30–37

    CAS  PubMed  Google Scholar 

  9. Falkner FG, Moss B (1988) Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J Virol 62:1849–1854

    CAS  PubMed  Google Scholar 

  10. Havenga M, Vogels R, Zuijdgeest D, Radosevic K, Mueller S, Sieuwerts M, Weichold F, Damen I, Kaspers J, Lemckert A, van Meerendonk M, van der Vlugt R, Holterman L, Hone D, Skeiky Y, Mintardjo R, Gillissen G, Barouch D, Sadoff J, Goudsmit J (2006) Novel replication incompetent adenoviral B-group vectors: high vector stability and yield in PEG.C6 cells. J Gen Virol 87:2135–2143

    Article  CAS  PubMed  Google Scholar 

  11. Panicali D, Davis SW, Weinberg RL, Paoletti E (1983) Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci USA 80:5364–5368

    Article  CAS  PubMed  Google Scholar 

  12. Payne LG (1980) Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J Gen Virol 50:89–100

    Article  CAS  PubMed  Google Scholar 

  13. Reed LJ, Muench H (1938) A simple method of estimating 50 percent endpoints. Am J Hyg 27:493

    Google Scholar 

  14. Scheiflinger F, Falkner FG, Dorner F (1997) Role of the fowlpox virus thymidine kinase gene for the growth of FPV recombinants in cell culture. Arch Virol 142:2421–2431

    Article  CAS  PubMed  Google Scholar 

  15. Spehner D, Drillien R, Lecocq JP (1990) Construction of fowlpox virus vectors with intergenic insertion: expression of the beta-galactosidase gene and the measles virus fusion gene. J Virol 64:527–533

    CAS  PubMed  Google Scholar 

  16. Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish GF, Rock DL (2001) Genome of lumpy skin disease virus. J Virol 75:7122–7130

    Article  CAS  PubMed  Google Scholar 

  17. Tulman ER, Afonso CL, Lu Z, Zsak L, Sur JH, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL (2002) The genomes of sheeppox and goatpox viruses. J Virol 76:6054–6061

    Article  CAS  PubMed  Google Scholar 

  18. Vanderplasschen A, Mathew E, Hollinshead M, Sim RB, Smith GL (1998) Extracellular enveloped vaccinia virus is resistant to complement because of incorporation of host complement control proteins into its envelope. Proc Natl Acad Sci USA 95:7544–7549

    Article  CAS  PubMed  Google Scholar 

  19. Verardi PH, Aziz FH, Ahmad S, Jones LS, Beyene B, Ngotho RN, Wamwayi HM, Yesus MG, Egziabher BG, Yilma TD (2002) Long-term sterilizing immunity to rinderpest in cattle vaccinated with a recombinant vaccinia virus expressing high levels of the fusion and hemagglutinin glycoproteins. J Virol 76:484–491

    Article  CAS  PubMed  Google Scholar 

  20. Wallace DB, Viljoen GJ (2002) Importance of thymidine kinase activity for normal growth of lumpy skin disease virus (SA-Neethling). Arch Virol 147:659–663

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (ID: 30760181) and the Project by the National Science & Technology Pillar Program of China (ID: 2006BAD04A09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenge Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Wang, F., Yu, L. et al. Identification of an intergenic region that is not essential for replication of goatpox virus. Arch Virol 155, 1337–1341 (2010). https://doi.org/10.1007/s00705-010-0705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0705-1

Keywords

Navigation