Skip to main content

Advertisement

Log in

Decreased CD4 and wide-ranging expression of other immune receptors after HIV-envelope-mediated formation of syncytia in vitro

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In human HIV infection, multinucleated cells (syncytia) are formed by fusion of HIV-infected cells with CD4+ cells. In order to examine possible functional implications of syncytia formation for the immune response, the expression of important surface molecules by T-cell syncytia and surrounding cells that remain unfused (bystander cells) was analyzed in cocultures of HIV-Env- and CD4-expressing E6 Jurkat T cells. Fusion partners were differentially labeled with lipophilic probes, and syncytia and bystander cells were identified by flow cytometry. The cellular phenotype and response to activation stimulus after fusion were analyzed with antibodies coupled to third-party fluorochromes. Cocultured unfused E6 cells showed a marked decrease in CD4 expression, suggesting the selective recruitment of cells strongly expressing CD4 into syncytia. However, the incorporated CD4 was not detected in the syncytia, whereas the range of expression of CD28, ICAM-1, CXCR4 and CD3 was wider than that of unfused cells. Limited expression of CD4 in the bystander unfused population, as well as in the newly formed syncytia, would result in limitation of further viral entry and a failure to identify these cells, and it could partially contribute to functional impairment and a decrease in the number of CD4+ T cells in AIDS. Most of the syncytia were viable and expressed CD25 and IL-2 in response to activation by phorbol myristate acetate (PMA) and ionomicyn. Thus, syncytia populations harboring widely heterogeneous levels of receptors would constitute a potential source of anomalous immune function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lifson JD, Reyes GR, McGrath MS, Stein BS, Engleman EG (1986) AIDS retrovirus induced cytopathology: giant cell formation and involvement of CD4 antigen. Science 232:1123–1127

    Article  CAS  PubMed  Google Scholar 

  2. Sodroski J, Goh WC, Rosen C, Campbell K, Haseltine WA (1986) Role of the HTLV-III/LAV envelope syncytium formation and cytophaticity. Nature 322:470–474

    Article  CAS  PubMed  Google Scholar 

  3. Berger EA, Murphy PM, Farber JM (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 17:657–700

    Article  CAS  PubMed  Google Scholar 

  4. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 185:621–628

    Article  CAS  PubMed  Google Scholar 

  5. Blaak H, van`t Wout AB, Brouwer M, Hooibrink B, Hovenkamp E, Schuitemaker H (2000) In vivo HIV-1 infection of CD45RA(+)CD4(+) T cells is established primarily by syncytium-inducing variants and correlates with the rate of CD4(+) T cell decline. Proc Natl Acad Sci USA 97:1269–1274

    Article  CAS  PubMed  Google Scholar 

  6. Connor RI, Mohri H, Cao Y, Ho DD (1993) Increased viral burden and cytopathicity correlate temporally with CD4+ T-lymphocyte decline and clinical progression in human immunodeficiency virus type 1-infected individuals. J Virol 67:1772–1777

    CAS  PubMed  Google Scholar 

  7. Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, Miedema F, Schellekens PT, Tersmette M (1993) Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Int Med 118:681–688

    CAS  PubMed  Google Scholar 

  8. Fouchier RAM, Meyaard L, Brouwer M, Hovenkam EY, Schuitemaker H (1996) Broader tropism and higher cytopathicity for CD4+ T cells of a syncytium-inducing compared to a non-syncytium-inducing HIV-1 isolate as a mechanism for accelerated CD4+ T cell decline in vivo. Virol 219:87–95

    Article  CAS  Google Scholar 

  9. Miedema F, Meyaard L, Koot M, Klein MR, Roos MT, Groenink M, Fouchier RA, Van’t Wout AB, Tersmette M, Schellekens PT, Schuitemaker H (1994) Changing virus-host interactions in the course of HIV-1 infection. Immunol Rev 140:35–72

    Article  CAS  PubMed  Google Scholar 

  10. Furrer H, Wendland T, Minder C, Christen A, von Overbeck J, Grunow R, Pichler W, Malinverni RP (1998) Association of syncytium-inducing phenotype of HIV-1 with CD4 cell count, viral load and sociodemographic characteristics. AIDS 12:1341–1346

    Article  CAS  PubMed  Google Scholar 

  11. Etemad-Moghadam B, Rhone D, Steenbeke T, Sun Y, Manola J, Gelman R, Fanton JW, Racz P, Tenner-Racz K, Axthelm MK, Letvin NL, Sodroski J (2001) Membrane-fusing capacity of the human immunodeficiency virus envelope protein determines the efficiency of CD4+ T-cell depletion in macaques infected by a simian-human immunodeficiency virus. J Virol 75:5646–5655

    Article  CAS  PubMed  Google Scholar 

  12. Nardacci R, Antinori A, Larocca LM, Arena V, Amendola A, Perfettini JL, Kroemer G, Piacentini M (2005) Characterization of cell death pathways in human immunodeficiency virus-associated encephalitis. Am J Pathol 167:695–704

    CAS  PubMed  Google Scholar 

  13. Frankel SS, Tenner-Racz K, Racz P, Wenig BM, Hansen CH, Heffner D, Nelson AM, Pope M, Steinman RM (1997) Active replication of HIV-1 at the lymphoepithelial surface of the tonsils. Am J Pathol 151:89–96

    CAS  PubMed  Google Scholar 

  14. Orenstein JM (2000) In vivo cytolysis and fusion of human immunodeficiency virus type 1-infected lymphocytes in lymphoid tissue. J Infect Dis 182:338–342

    Article  CAS  PubMed  Google Scholar 

  15. Teo I, Veryard C, Barnes H, An SF, Jones M, Lantos PL, Luthert P, Shaunak S (1997) Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. J Virol 71:2928–29330

    CAS  PubMed  Google Scholar 

  16. Castedo M, Perfettini JL, Andreau K, Roumier T, Piacetini M, Kroemer G (2003) Mitochondrial apoptosis induced by the HIV-1 envelope. Ann N Y Acad Sci 1010:19–28

    Article  CAS  PubMed  Google Scholar 

  17. Scheller C, Jassoy C (2001) Syncytium formation amplifies apoptotic signals: a new view on apoptosis in HIV infection in vitro. Virology 282:48–55

    Article  CAS  PubMed  Google Scholar 

  18. Rinfret A, Latendresse H, Lefebvre R, St-Louis G, Jolicoeur P, Lamarre L (1991) Human immunodeficiency virus-infected multinucleated histiocytes in oropharyngeal lymphoid tissues from two asymptomatic patients. Am J Pathol 138:421–426

    CAS  PubMed  Google Scholar 

  19. Chan DC, Kim PS (1998) HIV entry and its inhibition. Cell 93:681–684

    Article  CAS  PubMed  Google Scholar 

  20. Berman PW, Nakamura GR (1994) Adhesion mediated by intercellular adhesion molecule 1 attenuates the potency of antibodies that block HIV-1 gp160-dependent syncytium formation. AIDS Res Hum Retroviruses 10:585–593

    Article  CAS  PubMed  Google Scholar 

  21. Hildreth JE, Orentas RJ (1989) Involvement of a leukocyte adhesion receptor (LFA-1) in HIV-induced syncytium formation. Science 244:1075–1078

    Article  CAS  PubMed  Google Scholar 

  22. Pantaleo G, Butini L, Graziosi C, Poli G, Schnittman SM, Greenhouse J, Gallin JI, Fauci AS (1991) Human immunodeficiency virus (HIV) infection in CD4+ T-lymphocytes deficient in LFA-1: LFA-1 is required for HIV-mediated fusion but not for viral transmission. J Exp Med 173:511–514

    Article  CAS  PubMed  Google Scholar 

  23. Huerta L, Lamoyi E, Baez-Saldaña A, Larralde C (2002) Human immunodeficiency virus envelope-dependent cell–cell fusion: a quantitative fluorescent cytometric assay. Cytometry 47:100–106

    Article  PubMed  Google Scholar 

  24. Huerta L, López-Balderas N, Larralde C, Lamoyi E (2006) Discriminating in vitro cell fusion from cell aggregation by flow cytometry combined with fluorescence resonance energy transfer. J Virol Methods 138:17–23

    Article  CAS  PubMed  Google Scholar 

  25. López-Balderas N, Huerta L, Villarreal C, Rivera-Toledo E, Sandoval G, Larralde C, Lamoyi E (2007) In vitro cell fusion between CD4(+) and HIV-1 Env(+) T cells generates a diversity of syncytia varying in total number, size and cellular content. Virus Res 123:130–146

    Google Scholar 

  26. Gascoigne NR, Zal T (2004) Molecular interactions at cell-antigen-presenting cell interface. Curr Opin Immunol 16:114–119

    Article  CAS  PubMed  Google Scholar 

  27. Cao J, Park IW, Cooper A, Sodroski J (1996) Molecular determinants of acute single-cell lysis by human immunodeficiency virus type 1. J Virol 70:1340–1354

    CAS  PubMed  Google Scholar 

  28. Huerta L, López-Balderas N, Rivera-Toledo E, Sandoval G, Gómez-Icazbalceta G, Villarreal C, Lamoyi E, Larralde C (2009) HIV-envelope-dependent cell-cell fusion: quantitative studies. ScientificWorld J 9:746–763

    CAS  Google Scholar 

  29. Schmid I, Uittenbogaart CH, Giorgi JV (1994) Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry 15:12–20

    Article  CAS  PubMed  Google Scholar 

  30. van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  PubMed  Google Scholar 

  31. Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W (2001) Current protocols in immunology. Greene Publishing, Wiley, New York

  32. Crise B, Buonocore L, Rose JK (1990) CD4 is retained in the endoplasmic reticulum by the human immunodeficiency virus type 1 glycoprotein precursor. J Virol 64:5585–5593

    CAS  PubMed  Google Scholar 

  33. Stevenson M, Meier C, Mann A, Chapman N, Wasiak A (1988) Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: mechanism for persistence in AIDS. Cell 53:483–496

    Article  CAS  PubMed  Google Scholar 

  34. Abraham RT, Weiss A (2004) Jurkat T cells and development of the T-cell receptor signaling paradigm. Nat Rev Immunol 4:301–308

    Article  CAS  PubMed  Google Scholar 

  35. Frey S, Marsh M, Günther S, Pelchen-Matthews A, Stephens P, Ortlepp S, Stegmann T (1995) Temperature dependence of cell–cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1. J Virol 69:1462–1472

    CAS  PubMed  Google Scholar 

  36. Iyengar S, Hildreth JE, Schwartz DH (1998) Actin-dependent receptor colocalization required for human immunodeficiency virus entry into host cells. J Virol 72:5251–5255

    CAS  PubMed  Google Scholar 

  37. Moore JP, McKeating JA, Weiss RA, Sattentau QJ (1990) Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250:1139–1142

    Article  CAS  PubMed  Google Scholar 

  38. Schneider J, Kaaden O, Copeland TD, Oroszlan S, Hunsmann G (1986) Shedding and interspecies type sero-reactivity of the envelope glycopolypeptide gp120 of the human immunodeficiency virus. J Gen Virol 67:2533–2538

    Article  CAS  PubMed  Google Scholar 

  39. Geleziunas R, Bour S, Wainberg MA (1994) Cell surface down-modulation of CD4 after infection by HIV-1. FASEB J 8:593–600

    CAS  PubMed  Google Scholar 

  40. Dimitrov DS, Hillman K, Manischewitz J, Blumenthal R, Golding H (1992) Kinetics of soluble CD4 binding to cells expressing human immunodeficiency virus type 1 envelope glycoprotein. J Virol 66:132–138

    CAS  PubMed  Google Scholar 

  41. Hart TK, Kirsh R, Ellens H, Sweet RW, Lambert DM, Petteway SR Jr, Leary J, Bugelski PJ (1991) Binding of soluble CD4 proteins to human immunodeficiency virus type 1 and infected cells induces release of envelope glycoprotein gp120. Proc Natl Acad Sci USA 88:2189–2193

    Article  CAS  PubMed  Google Scholar 

  42. Bergeron L, Sullivan N, Sodroski J (1992) Target cell-specific determinants of membrane fusion within the human immunodeficiency virus type 1 gp120 third variable region and gp41 amino terminus. J Virol 66:2389–2397

    CAS  PubMed  Google Scholar 

  43. Amadori A, De Silvestro G, Zamarchi R, Veronese ML, Mazza MR, Schiavo G, Panozzo M, De Rossi A, Ometto L, Mous J et al (1992) CD4 epitope masking by gp120/anti-gp120 antibody complexes. A potential mechanism for CD4+ cell function down-regulation in AIDS patients. J Immunol 148:2709–2716

    CAS  PubMed  Google Scholar 

  44. Mannie MD, Rosser JM, White GA (1995) Autologous rat myelin basic protein is a partial agonist that is converted into a full antagonist upon blockade of CD4. Evidence for the integration of efficacious and nonefficacious signals during T cell recognition. J Immunol 154:2642–2654

    CAS  PubMed  Google Scholar 

  45. Viola A, Salio M, Tuosto L, Linkert S, Acuto O, Lanzavecchia A (1997) Quantitative contribution of CD4 and CD8 to T cell antigen receptor serial triggering. J Exp Med 186:1775–1779

    Article  CAS  PubMed  Google Scholar 

  46. Orenstein JM (2008) HIV expression in surgical specimens. AIDS Res Hum Retroviruses 24:947–955

    Article  CAS  PubMed  Google Scholar 

  47. Walter BL, Wehrly K, Swanstrom R, Platt E, Kabat D, Chesebro B (2005) Role of low CD4 levels in the influence of human immunodeficiency virus type 1 envelope V1 and V2 regions on entry and spread in macrophages. J Virol 79:4828–4837

    Article  CAS  PubMed  Google Scholar 

  48. Bhattacharya J, Peters PJ, Clapham PR (2003) CD4-independent infection of HIV and SIV: implications for envelope conformation and cell tropism in vivo. AIDS 17(Suppl 4):S35–S43

    Article  PubMed  Google Scholar 

  49. Puffer BA, Pöhlmann S, Edinger AL, Carlin D, Sanchez MD, Reitter J, Watry DD, Fox HS, Desrosiers RC, Doms RW (2002) CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J Virol 76:2595–2605

    Article  CAS  PubMed  Google Scholar 

  50. Cefai D, Ferrer M, Serpente N, Idziorek T, Dautry-Varsat A, Debre P, Bismuth G (1992) Internalization of HIV glycoprotein gp120 is associated with down-modulation of membrane CD4 and p56lck together with impairment of T cell activation. J Immunol 149:285–294

    CAS  PubMed  Google Scholar 

  51. Zal T, Weiss S, Mellor A, Stockinger B (1996) Expression of a second receptor rescues self-specific T cells from thymic deletion and allows activation of autoreactive effector function. Proc Natl Acad Sci USA 93:9102–9107

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Jurkat-HXBc2(4) and Jurkat-522F/Y cells were obtained from Dr. Joseph Sodroski, and Jurkat Clone E6-1 cells from ATCC (Dr. Arthur Weiss), through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH. This work was supported by Consejo Nacional de Ciencia y Tecnología of México (CONACYT), grant 61425 and the Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, grant IN229307. Evelyn Rivera-Toledo and Nayali López-Balderas were recipients of a fellowship from CONACYT. We appreciate the expert technical assistance of Carlos Castellanos with cell sorting.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Huerta.

Additional information

E. Rivera-Toledo and N. López-Balderas contributed equally to this work and are listed as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera-Toledo, E., López-Balderas, N., Huerta, L. et al. Decreased CD4 and wide-ranging expression of other immune receptors after HIV-envelope-mediated formation of syncytia in vitro. Arch Virol 155, 1205–1216 (2010). https://doi.org/10.1007/s00705-010-0704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0704-2

Keywords

Navigation