Skip to main content

Advertisement

Log in

Classical swine fever virus down-regulates endothelial connexin 43 gap junctions

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Classical swine fever is a contagious disease of pigs characterized by fatal hemorrhagic fever. Classical swine fever virus (CSFV) induces the expression of pro-inflammatory and pro-coagulant factors of vascular endothelial cells and establishes a long-term infection. This study aimed to understand the effect of CSFV on endothelial connexin 43 (Cx43) expression and gap junctional intercellular coupling (GJIC). Porcine aortic endothelial cells were infected with CSFV at different multiplicity of infection for 48 h. Semi-quantitative RT-PCR, immunoconfocal microscopy, and Western blotting showed that the transcription and translation of Cx43 were reduced, and this was associated with an attenuation of GJIC. This decrease occurred in a time-dependent manner. An ERK inhibitor (PD98059), a JNK inhibitor (SP600125), and proteasome/lysosome inhibitors all significantly reversed the reduction in Cx43 protein levels without any influence on the titer of progeny virus. In addition, CSFV activated ERK and JNK in a time-dependent manner and down-regulated Cx43 promoter activity, mainly through decreased AP2 binding. This effect was primarily caused by the replication of CSFV rather than a consequence of cytokines being induced by CSFV infection of endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aasen T, Hodgins MB, Edward M, Graham SV (2003) The relationship between connexins, gap junctions, tissue architecture and tumor invasion, as studied in a novel in vitro model of HPV-16-associated cervical cancer progression. Oncogene 22:7969–7980

    Article  PubMed  Google Scholar 

  2. Bauhofer O, Summerfield A, Sakoda Y, Tratschin J, Hofmann MA, Ruggli N (2007) Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. J Virol 81:3087–3096

    Article  CAS  PubMed  Google Scholar 

  3. Bensaude E, Turner JLE, Wakeley PR, Sweetman DA, Pardieu C, Drew TW, Wileman T, Powell PP (2004) Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol 85:1029–1037

    Article  CAS  PubMed  Google Scholar 

  4. Campos E, Revilla C, Chamorro S, Alvarez B, Ezquerra A, Dominguez J, Alonso F (2004) In vitro effect of classical swine fever virus on a porcine aortic endothelial cell line. Vet Res 35:625–633

    Article  PubMed  Google Scholar 

  5. Crow DS, Beyer EC, Paul DL, Kobe SS, Lau AF (1990) Phosphorylation of connexin43 gap junction protein in uninfected and Rous sarcoma virus-transformed mammalian fibroblasts. Mol Cell Biol 10:1754–1763

    CAS  PubMed  Google Scholar 

  6. Danave IR, Tiffany-Castiglioni E, Zenger E, Barhoumi R, Burghardt RC, Collisson EW (1994) Feline immunodeficiency virus decreases cell-cell communication and mitochondrial membrane potential. J Virol 68:6745–6750

    CAS  PubMed  Google Scholar 

  7. Doceul V, Charleston B, Crooke H, Reid E, Powell PP, Seago J (2008) The Npro product of classical swine fever virus interacts with IkappaBalpha, the NF-kappaB inhibitor. J Gen Virol 89:1881–1889

    Article  CAS  PubMed  Google Scholar 

  8. Echetebu CO, Ali M, Izban MG, MacKay L, Garfield RE (1999) Localization of regulatory protein binding sites in the proximal region of human myometrial connexin43 gene. Mol Hum Reprod 5:757–766

    Article  CAS  PubMed  Google Scholar 

  9. Faccini AM, Cairney M, Ashrafi GH, Finbow ME, Campo MS, Pitts JD (1996) The bovine papilloma virus type 4 E8 protein binds to ductin and causes loss of gap junctional intercellular communication in primary fibroblast. J Virol 70:9041–9045

    CAS  PubMed  Google Scholar 

  10. Girao H, Pereira P (2003) Phosphorylation of connexin43 acts as a stimuli for proteasome-dependent degradation of the protein in lens epithelial cells. Mol Vis 9:24–30

    CAS  PubMed  Google Scholar 

  11. Hayama E, Imamura S, Wu C, Nakazawa M, Matsuoka R, Nakanishi T (2006) Analysis of voltage-gated potassium channel beta1 subunits in the porcine neonatal ductus arteriosus. Pediatr Res 59:167–174

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez M, Shao Q, Yang XJ, Luh SP, Kandouz M, Batist G, Laird DW, Alaoui-Jamali MA (2006) A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene Cx43 in prostate cancer cells. Prostate 66:1151–1161

    Article  CAS  PubMed  Google Scholar 

  13. Johns HL, Bensaude E, La Rocca SA, Seago J, Charleston B, Steinbach F, Drew T, Crooke H, Everett H (2010) Classical swine fever virus infection protects aortic endothelial cells from pIpC-mediated apoptosis. J Gen Virol 91(Pt 4):1038–1046

    Article  CAS  PubMed  Google Scholar 

  14. Kanemitsu MY, Lau AF (1993) Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-O-tetradecanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase. Mol Biol Cell 4:837–848

    CAS  PubMed  Google Scholar 

  15. Karin M, Lin A (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3:221–227

    Article  CAS  PubMed  Google Scholar 

  16. Knabb MT, Danielsen CA, Mchane-Kay K, Mbuy GKN, Woodruff R (2007) Herpes simplex virus-type 2 infectivity and agents that block gap junctional intercellular communication. Virus Res 124:212–219

    Article  CAS  PubMed  Google Scholar 

  17. Koster-Patzlaff C, Hosseini SM, Reuss B (2007) Persistent borna disease virus infection changes expression and function of astroglial gap junctions in vivo and in vitro. Brain Res 1184:316–332

    Article  PubMed  Google Scholar 

  18. Kuroki T, Inoguchi T, Umeda F, Ueda F, Nawata F (1998) High glucose induces alteration of gap junction permeability and phosphorylation of connexin43 in cultured aortic smooth muscle cells. Diabetes 47:931–936

    Article  CAS  PubMed  Google Scholar 

  19. Liang JG, Tadors PN, Westphale EM, Beyer EC (1997) Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Exp Cell Res 236:482–492

    Article  Google Scholar 

  20. Lo CW (1996) The role of gap junction membrane channels in development. J Bioenerg Biomembr 28:379–385

    Article  CAS  PubMed  Google Scholar 

  21. Meme W, Ezan P, Venance L, Glowinski J, Giaume C (2004) ATP-induced inhibition of gap junctional communication is enhanced by interleukin-1 beta treatment in cultured astrocytes. Neuroscience 126:95–104

    Article  CAS  PubMed  Google Scholar 

  22. Moennig V, Floegel-Niesmann G, Greiser-Wilke I (2003) Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J 165:11–20

    Article  CAS  PubMed  Google Scholar 

  23. Ovanesov MV, Sauder C, Rubin SA, Richt J, Nath A, Carbone KM, Pletnikov MV (2006) Activation of microglia by borna disease virus infection: in vitro study. J Virol 80:12141–12148

    Article  CAS  PubMed  Google Scholar 

  24. Petrich BG, Gong X, Lerner DL, Wang X, Brown JH, Saffitz JE, Wang Y (2002) c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res 91:640–647

    Article  CAS  PubMed  Google Scholar 

  25. Reed IJ, Muench RH (1938) A simple method to estimating fifty percent end points. Am J Hyg 27:493–497

    Google Scholar 

  26. Rivedal E, Leithe E (2005) Connexin43 synthesis, phosphorylation, and degradation in regulation of transient inhibition of gap junction intercellular communication by the phorbol ester TPA in rat liver epithelial cells. Exp Cell Res 302:143–152

    Article  CAS  PubMed  Google Scholar 

  27. Salameh A, Krautblatter S, Baessler S, Karl S, Rojas Gomez D, Dhein S, Pfeiffer D (2008) Signal transduction and transcriptional control of cardiac connexin43 up-regulation after alpha1-adrenoceptor stimulation. J Pharmacol Exp Ther 326:315–322

    Article  CAS  PubMed  Google Scholar 

  28. Sato T, Haimovici R, Kao R, Li AF, Roy S (2002) Down-regulation of connexins expression by high glucose reduces gap junction activity in microvascular endothelial cells. Diabetes 51:1565–1571

    Article  CAS  PubMed  Google Scholar 

  29. Shyu KG, Wang BW, Yang YH, Tsai SC, Lin S, Lee CC (2004) Amphetamine activates connexin43 gene expression in cultured neonatal rat cardiomyocytes through JNK and AP-1 pathway. Cardiovasc Res 63:98–108

    Article  CAS  PubMed  Google Scholar 

  30. Summerfield A, Alves M, Ruggli N, de Bruin MG, McCullough KC (2008) High IFN-alpha responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever. J Interferon Cytokine Res 20:448–456

    Google Scholar 

  31. Tonon R, D’Andrea P (2002) The functional expression of connexin43 in articular chondrocytes is increased by interleukin 1beta: evidence for a Ca2+-dependent mechanism. Biotechnology 39:153–160

    CAS  Google Scholar 

  32. Tsai CH, Yeh HI, Tian TY, Lee YN, Ko YS (2004) Down-regulating effect of nicotine on connexin43 gap junctions in human umbilical vein endothelial cells is attenuated by statins. Eur J Cell Biol 82:589–595

    Article  CAS  PubMed  Google Scholar 

  33. Wang HH, Kung CI, Tseng YY, Lin YC, Chen CH, Tsai CH, Yeh HI (2008) Activation of endothelial cells to pathological status by down-regulation of connexin43. Cardiovasc Res 79:509–518

    Article  CAS  PubMed  Google Scholar 

  34. Yeh HI, Lu CS, Wu YJ, Chen CC, Hong RC, Ko YS, Shiao MS, Severs NJ, Tsai CH (2003) Reduced expression of endothelial connexin37 and connexin40 in hyperlipidemic mice: recovery of connexin37 after 7-day simvastatin treatment. Atheroscler Thromb Vas Biol 20:1753–1762

    Google Scholar 

  35. Zaffuto KM, Piccone ME, Burrage TG, Balinsky CA, Risatti GR, Borca MV, Holinka LG, Rock DL, Afonso CL (2007) Classical swine fever virus inhibits nitric oxide production in infected macrophages. J Gen Virol 88:3007–3012

    Article  CAS  PubMed  Google Scholar 

  36. Zhao Y, Rivieccio MA, Lutz S, Scemes E, Brosnan CF (2006) The TLR3 ligand polyI:C downregulates connexin43 expression and function in astrocytes by a mechanism involving the NF-kappaB and PI3 kinase pathways. Glia 54:775–785

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the grant NSC-95-2313-B-020-005 awarded to Dr. C. Y. Wang from the National Science Council, Taiwan. Dr. Hung-I Yeh thanks the Mackay Memorial Hospital, Taiwan (MMH-E 97003), for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Young Wang.

Additional information

H.-J. Hsiao and P. A. Liu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, HJ., Liu, PA., Yeh, HI. et al. Classical swine fever virus down-regulates endothelial connexin 43 gap junctions. Arch Virol 155, 1107–1116 (2010). https://doi.org/10.1007/s00705-010-0693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0693-1

Keywords

Navigation