Skip to main content

Advertisement

Log in

Viral interaction with molecular chaperones: role in regulating viral infection

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

As essential effectors in protein quality control, molecular chaperones serve as the primary checkpoint to assist proper protein folding and prevent misfolded proteins from denaturation and aggregation. In addition, chaperones can function to direct terminally misfolded proteins to the proteolytic system for degradation. Viruses rely on host cell machineries for productive infection. Like for many other processes, various viruses have been shown to evolve mechanisms to utilize or subvert the host protein quality control machinery to support the completion of their life cycle. Furthermore, recent studies suggest that some viruses encode for their own chaperone-like proteins to enhance their infectivity. This review summarizes the current understanding of the interplay between molecular chaperones and viral proteins, highlights the chaperone activities of a number of viral proteins, and discusses potential antiviral therapeutic strategies targeting the virus-chaperone interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agostini I, Popov S, Li J, Dubrovsky L, Hao T, Bukrinsky M (2000) Heat-shock protein 70 can replace viral protein R of HIV-1 during nuclear import of the viral preintegration complex. Exp Cell Res 259:398–403

    Article  CAS  PubMed  Google Scholar 

  2. Andreeva L, Heads R, Green CJ (1999) Cyclophilins and their possible role in the stress response. Int J Exp Pathol 80:305–315

    Article  CAS  PubMed  Google Scholar 

  3. Arndt V, Rogon C, Hohfeld J (2007) To be, or not to be—molecular chaperones in protein degradation. Cell Mol Life Sci 64:2525–2541

    Article  CAS  PubMed  Google Scholar 

  4. Awe K, Lambert C, Prange R (2008) Mammalian BiP controls posttranslational ER translocation of the hepatitis B virus large envelope protein. FEBS Lett 582:3179–3184

    Article  CAS  PubMed  Google Scholar 

  5. Babaahmady K, Oehlmann W, Singh M, Lehner T (2007) Inhibition of human immunodeficiency virus type 1 infection of human CD4+ T cells by microbial HSP70 and the peptide epitope 407–426. J Virol 81:3354–3360

    Article  CAS  PubMed  Google Scholar 

  6. Babaahmady K, Bergmeier LA, Lehner T (2008) Combining human antisera to human leukocyte antigens, HIVgp120 and 70 kDa heat shock protein results in broadly neutralizing activity to HIV-1. Aids 22:1267–1276

    Article  CAS  PubMed  Google Scholar 

  7. Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, Tanaka J (2005) Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir Chem Chemother 16:135–146

    CAS  PubMed  Google Scholar 

  8. Beachy SH, Kisailus AJ, Repasky EA, Subjeck JR, Wang XY, Kazim AL (2007) Engineering secretable forms of chaperones for immune modulation and vaccine development. Methods 43:184–193

    Article  CAS  PubMed  Google Scholar 

  9. Bolt G (2001) The measles virus (MV) glycoproteins interact with cellular chaperones in the endoplasmic reticulum and MV infection upregulates chaperone expression. Arch Virol 146:2055–2068

    Article  CAS  PubMed  Google Scholar 

  10. Brenner BG, Wainberg MA (1999) Heat shock protein-based therapeutic strategies against human immunodeficiency virus type 1 infection. Infect Dis Obstet Gynecol 7:80–90

    Article  CAS  PubMed  Google Scholar 

  11. Buchkovich NJ, Maguire TG, Yu Y, Paton AW, Paton JC, Alwine JC (2008) Human cytomegalovirus specifically controls the levels of the endoplasmic reticulum chaperone BiP/GRP78, which is required for virion assembly. J Virol 82:31–39

    Article  CAS  PubMed  Google Scholar 

  12. Bukrinsky M, Zhao Y (2004) Heat-shock proteins reverse the G2 arrest caused by HIV-1 viral protein R. DNA Cell Biol 23:223–225

    Article  CAS  PubMed  Google Scholar 

  13. Burch AD, Weller SK (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol 79:10740–10749

    Article  CAS  PubMed  Google Scholar 

  14. Calderwood SK, Mambula SS, Gray PJ Jr, Theriault JR (2007) Extracellular heat shock proteins in cell signaling. FEBS Lett 581:3689–3694

    Article  CAS  PubMed  Google Scholar 

  15. Chabaud S, Lambert H, Sasseville AM, Lavoie H, Guilbault C, Massie B, Landry J, Langelier Y (2003) The R1 subunit of herpes simplex virus ribonucleotide reductase has chaperone-like activity similar to Hsp27. FEBS Lett 545:213–218

    Article  CAS  PubMed  Google Scholar 

  16. Chase G, Deng T, Fodor E, Leung BW, Mayer D, Schwemmle M, Brownlee G (2008) Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology 377:431–439

    Article  CAS  PubMed  Google Scholar 

  17. Chatterji U, Bobardt M, Selvarajah S, Yang F, Tang H, Sakamoto N, Vuagniaux G, Parkinson T, Gallay P (2009) The isomerase active site of cyclophilin A is critical for hepatitis C virus replication. J Biol Chem 284:16998–17005

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Zhao X, Tan J, Lu H, Qi Z, Huang Q, Zeng X, Zhang M, Jiang S, Jiang H, Yu L (2007) Structure-based identification of small molecule compounds targeting cell cyclophilin A with anti-HIV-1 activity. Eur J Pharmacol 565:54–59

    Article  CAS  PubMed  Google Scholar 

  19. Cho DY, Yang GH, Ryu CJ, Hong HJ (2003) Molecular chaperone GRP78/BiP interacts with the large surface protein of hepatitis B virus in vitro and in vivo. J Virol 77:2784–2788

    Article  CAS  PubMed  Google Scholar 

  20. Choukhi A, Ung S, Wychowski C, Dubuisson J (1998) Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol 72:3851–3858

    CAS  PubMed  Google Scholar 

  21. Chromy LR, Pipas JM, Garcea RL (2003) Chaperone-mediated in vitro assembly of Polyomavirus capsids. Proc Natl Acad Sci USA 100:10477–10482

    Article  CAS  PubMed  Google Scholar 

  22. Cobbold C, Windsor M, Wileman T (2001) A virally encoded chaperone specialized for folding of the major capsid protein of African swine fever virus. J Virol 75:7221–7229

    Article  CAS  PubMed  Google Scholar 

  23. Cripe TP, Delos SE, Estes PA, Garcea RL (1995) In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J Virol 69:7807–7813

    CAS  PubMed  Google Scholar 

  24. Daniels R, Kurowski B, Johnson AE, Hebert DN (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 11:79–90

    Article  CAS  PubMed  Google Scholar 

  25. Das S, Laxminarayana SV, Chandra N, Ravi V, Desai A (2009) Heat shock protein 70 on Neuro2a cells is a putative receptor for Japanese encephalitis virus. Virology 385:47–57

    Article  CAS  PubMed  Google Scholar 

  26. Dubuisson J, Rice CM (1996) Hepatitis C virus glycoprotein folding: disulfide bond formation and association with calnexin. J Virol 70:778–786

    CAS  PubMed  Google Scholar 

  27. Dubuisson J (1998) The role of chaperone proteins in the assembly of envelope proteins of hepatitis C virus. Bull Mem Acad R Med Belg 153:343–349 discussion 350–341

    CAS  PubMed  Google Scholar 

  28. Ellis J (2005) Chaperone function: The orthodox view. In: Henderson B and Pockley G (ed) Molecular chaperons and cell signaling, Cambridge, pp 3–21. doi:10.2277/0521836549

  29. Gaudin Y (1997) Folding of rabies virus glycoprotein: epitope acquisition and interaction with endoplasmic reticulum chaperones. J Virol 71:3742–3750

    CAS  PubMed  Google Scholar 

  30. Geller R, Vignuzzi M, Andino R, Frydman J (2007) Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev 21:195–205

    Article  CAS  PubMed  Google Scholar 

  31. Gober MD, Wales SQ, Aurelian L (2005) Herpes simplex virus type 2 encodes a heat shock protein homologue with apoptosis regulatory functions. Front Biosci 10:2788–2803

    Article  CAS  PubMed  Google Scholar 

  32. Guerrero CA, Bouyssounade D, Zarate S, Isa P, Lopez T, Espinosa R, Romero P, Mendez E, Lopez S, Arias CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102

    Article  CAS  PubMed  Google Scholar 

  33. Hammond C, Helenius A (1994) Folding of VSV G protein: sequential interaction with BiP and calnexin. Science 266:456–458

    Article  CAS  PubMed  Google Scholar 

  34. Hu J, Anselmo D (2000) In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase: posttranslational activation by Hsp90. J Virol 74:11447–11455

    Article  CAS  PubMed  Google Scholar 

  35. Iordanskiy S, Zhao Y, Dubrovsky L, Iordanskaya T, Chen M, Liang D, Bukrinsky M (2004) Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol 78:9697–9704

    Article  CAS  PubMed  Google Scholar 

  36. Jeon YK, Park CH, Kim KY, Li YC, Kim J, Kim YA, Paik JH, Park BK, Kim CW, Kim YN (2007) The heat-shock protein 90 inhibitor, geldanamycin, induces apoptotic cell death in Epstein-Barr virus-positive NK/T-cell lymphoma by Akt down-regulation. J Pathol 213:170–179

    Article  CAS  PubMed  Google Scholar 

  37. Kampmueller KM, Miller DJ (2005) The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. J Virol 79:6827–6837

    Article  CAS  PubMed  Google Scholar 

  38. Kim SS, Shin HJ, Cho YH, Rho HM (2000) Expression of stable hepatitis B viral polymerase associated with GRP94 in E. coli. Arch Virol 145:1305–1320

    Article  CAS  PubMed  Google Scholar 

  39. Kosmaoglou M, Schwarz N, Bett JS, Cheetham ME (2008) Molecular chaperones and photoreceptor function. Prog Retin Eye Res 27:434–449

    Article  CAS  PubMed  Google Scholar 

  40. Kotsiopriftis M, Tanner JE, Alfieri C (2005) Heat shock protein 90 expression in Epstein-Barr virus-infected B cells promotes gammadelta T-cell proliferation in vitro. J Virol 79:7255–7261

    Article  CAS  PubMed  Google Scholar 

  41. Kuciak M, Gabus C, Ivanyi-Nagy R, Semrad K, Storchak R, Chaloin O, Muller S, Mely Y, Darlix JL (2008) The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro. Nucleic Acids Res 36:3389–3400

    Article  CAS  PubMed  Google Scholar 

  42. Kumar M, Mitra D (2005) Heat shock protein 40 is necessary for human immunodeficiency virus-1 Nef-mediated enhancement of viral gene expression and replication. J Biol Chem 280:40041–40050

    Article  CAS  PubMed  Google Scholar 

  43. Lambert C, Prange R (2003) Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: implications for translocational regulation. Proc Natl Acad Sci USA 100:5199–5204

    Article  CAS  PubMed  Google Scholar 

  44. Lee SH, Song R, Lee MN, Kim CS, Lee H, Kong YY, Kim H, Jang SK (2008) A molecular chaperone glucose-regulated protein 94 blocks apoptosis induced by virus infection. Hepatology 47:854–866

    Article  CAS  PubMed  Google Scholar 

  45. Lehner T, Mitchell E, Bergmeier L, Singh M, Spallek R, Cranage M, Hall G, Dennis M, Villinger F, Wang Y (2000) The role of gammadelta T cells in generating antiviral factors and beta-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur J Immunol 30:2245–2256

    Article  CAS  PubMed  Google Scholar 

  46. Lewthwaite J, Skinner A, Henderson B (1998) Are molecular chaperones microbial virulence factors? Trends Microbiol 6:426–428

    Article  CAS  PubMed  Google Scholar 

  47. Li YH, Tao PZ, Liu YZ, Jiang JD (2004) Geldanamycin, a ligand of heat shock protein 90, inhibits the replication of herpes simplex virus type 1 in vitro. Antimicrob Agents Chemother 48:867–872

    Article  CAS  PubMed  Google Scholar 

  48. Liberman E, Fong YL, Selby MJ, Choo QL, Cousens L, Houghton M, Yen TS (1999) Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. J Virol 73:3718–3722

    CAS  PubMed  Google Scholar 

  49. Lim SO, Park SG, Yoo JH, Park YM, Kim HJ, Jang KT, Cho JW, Yoo BC, Jung GH, Park CK (2005) Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 11:2072–2079

    CAS  PubMed  Google Scholar 

  50. Liu JS, Kuo SR, Makhov AM, Cyr DM, Griffith JD, Broker TR, Chow LT (1998) Human Hsp70 and Hsp40 chaperone proteins facilitate human papillomavirus-11 E1 protein binding to the origin and stimulate cell-free DNA replication. J Biol Chem 273:30704–30712

    Article  CAS  PubMed  Google Scholar 

  51. Liu K, Qian L, Wang J, Li W, Deng X, Chen X, Sun W, Wei H, Qian X, Jiang Y, He F (2009) Two-dimensional blue native/SDS-PAGE analysis reveals heat shock protein chaperone machinery involved in hepatitis B virus production in HepG2.2.15 cells. Mol Cell Proteomics 8:495–505

    Article  CAS  PubMed  Google Scholar 

  52. Loffler-Mary H, Werr M, Prange R (1997) Sequence-specific repression of cotranslational translocation of the hepatitis B virus envelope proteins coincides with binding of heat shock protein Hsc70. Virology 235:144–152

    Article  CAS  PubMed  Google Scholar 

  53. Ma Y, Hendershot LM (2004) ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28:51–65

    Article  CAS  PubMed  Google Scholar 

  54. Maruri-Avidal L, Lopez S, Arias CF (2008) Endoplasmic reticulum chaperones are involved in the morphogenesis of rotavirus infectious particles. J Virol 82:5368–5380

    Article  CAS  PubMed  Google Scholar 

  55. McClellan AJ, Tam S, Kaganovich D, Frydman J (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7:736–741

    Article  CAS  PubMed  Google Scholar 

  56. Miyata Y, Yahara I (2000) p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90. Oncogene 19:1477–1484

    Article  CAS  PubMed  Google Scholar 

  57. Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002) Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem 277:45306–45314

    Article  CAS  PubMed  Google Scholar 

  58. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  CAS  PubMed  Google Scholar 

  59. Naito T, Momose F, Kawaguchi A, Nagata K (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81:1339–1349

    Article  CAS  PubMed  Google Scholar 

  60. Neckers L, Tatu U (2008) Molecular chaperones in pathogen virulence: emerging new targets for therapy. Cell Host Microbe 4:519–527

    Article  CAS  PubMed  Google Scholar 

  61. Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651

    Article  CAS  PubMed  Google Scholar 

  62. Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, Moriishi K, Matsuura Y (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25:5015–5025

    Article  CAS  PubMed  Google Scholar 

  63. Pack CD, Kumaraguru U, Suvas S, Rouse BT (2005) Heat-shock protein 70 acts as an effective adjuvant in neonatal mice and confers protection against challenge with herpes simplex virus. Vaccine 23:3526–3534

    Article  CAS  PubMed  Google Scholar 

  64. Pack CD, Gierynska M, Rouse BT (2008) An intranasal heat shock protein based vaccination strategy confers protection against mucosal challenge with herpes simplex virus. Hum Vaccin 4:360–364

    PubMed  Google Scholar 

  65. Park SG, Jung G (2001) Human hepatitis B virus polymerase interacts with the molecular chaperonin Hsp60. J Virol 75:6962–6968

    Article  CAS  PubMed  Google Scholar 

  66. Park SG, Lee SM, Jung G (2003) Antisense oligodeoxynucleotides targeted against molecular chaperonin Hsp60 block human hepatitis B virus replication. J Biol Chem 278:39851–39857

    Article  CAS  PubMed  Google Scholar 

  67. Peng M, Chen M, Ling N, Xu H, Qing Y, Ren H (2006) Novel vaccines for the treatment of chronic HBV infection based on mycobacterial heat shock protein 70. Vaccine 24:887–896

    Article  CAS  PubMed  Google Scholar 

  68. Perez-Vargas J, Romero P, Lopez S, Arias CF (2006) The peptide-binding and ATPase domains of recombinant hsc70 are required to interact with rotavirus and reduce its infectivity. J Virol 80:3322–3331

    Article  CAS  PubMed  Google Scholar 

  69. Pockley AG, Muthana M, Calderwood SK (2008) The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 33:71–79

    CAS  PubMed  Google Scholar 

  70. Prange R, Werr M, Loffler-Mary H (1999) Chaperones involved in hepatitis B virus morphogenesis. Biol Chem 380:305–314

    Article  CAS  PubMed  Google Scholar 

  71. Rainey-Barger EK, Magnuson B, Tsai B (2007) A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane. J Virol 81:12996–13004

    Article  CAS  PubMed  Google Scholar 

  72. Ramalanjaona N, de Rocquigny H, Millet A, Ficheux D, Darlix JL, Mely Y (2007) Investigating the mechanism of the nucleocapsid protein chaperoning of the second strand transfer during HIV-1 DNA synthesis. J Mol Biol 374:1041–1053

    Article  CAS  PubMed  Google Scholar 

  73. Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Article  CAS  PubMed  Google Scholar 

  74. Schelhaas M, Malmstrom J, Pelkmans L, Haugstetter J, Ellgaard L, Grunewald K, Helenius A (2007) Simian Virus 40 depends on ER protein folding and quality control factors for entry into host cells. Cell 131:516–529

    Article  CAS  PubMed  Google Scholar 

  75. Spence SL, Pipas JM (1994) SV40 large T antigen functions at two distinct steps in virion assembly. Virology 204:200–209

    Article  CAS  PubMed  Google Scholar 

  76. Stahl M, Retzlaff M, Nassal M, Beck J (2007) Chaperone activation of the hepadnaviral reverse transcriptase for template RNA binding is established by the Hsp70 and stimulated by the Hsp90 system. Nucleic Acids Res 35:6124–6136

    Article  CAS  PubMed  Google Scholar 

  77. Streblow DN, Kitabwalla M, Malkovsky M, Pauza CD (1998) Cyclophilin a modulates processing of human immunodeficiency virus type 1 p55Gag: mechanism for antiviral effects of cyclosporin A. Virology 245:197–202

    Article  CAS  PubMed  Google Scholar 

  78. Sullivan CS, Pipas JM (2001) The virus-chaperone connection. Virology 287:1–8

    Article  CAS  PubMed  Google Scholar 

  79. Sullivan CS, Pipas JM (2002) T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev 66:179–202

    Article  CAS  PubMed  Google Scholar 

  80. Suzuki H (1996) A hypothesis about the mechanism of assembly of double-shelled rotavirus particles. Arch Virol Suppl 12:79–85

    CAS  PubMed  Google Scholar 

  81. Tanaka Y, Kanai F, Kawakami T, Tateishi K, Ijichi H, Kawabe T, Arakawa Y, Nishimura T, Shirakata Y, Koike K, Omata M (2004) Interaction of the hepatitis B virus X protein (HBx) with heat shock protein 60 enhances HBx-mediated apoptosis. Biochem Biophys Res Commun 318:461–469

    Article  CAS  PubMed  Google Scholar 

  82. Thomas JA, Bosche WJ, Shatzer TL, Johnson DG, Gorelick RJ (2008) Mutations in human immunodeficiency virus type 1 nucleocapsid protein zinc fingers cause premature reverse transcription. J Virol 82:9318–9328

    Article  CAS  PubMed  Google Scholar 

  83. Thomas JA, Gorelick RJ (2008) Nucleocapsid protein function in early infection processes. Virus Res 134:39–63

    Article  CAS  PubMed  Google Scholar 

  84. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76:633–643

    Article  CAS  PubMed  Google Scholar 

  85. Ujino S, Yamaguchi S, Shimotohno K, Takaku H (2009) Heat-shock protein 90 is essential for stabilization of the hepatitis C virus nonstructural protein NS3. J Biol Chem 284:6841–6846

    Article  CAS  PubMed  Google Scholar 

  86. Waxman L, Whitney M, Pollok BA, Kuo LC, Darke PL (2001) Host cell factor requirement for hepatitis C virus enzyme maturation. Proc Natl Acad Sci USA 98:13931–13935

    Article  CAS  PubMed  Google Scholar 

  87. Wright CM, Seguin SP, Fewell SW, Zhang H, Ishwad C, Vats A, Lingwood CA, Wipf P, Fanning E, Pipas JM, Brodsky JL (2009) Inhibition of Simian Virus 40 replication by targeting the molecular chaperone function and ATPase activity of T antigen. Virus Res 141:71–80

    Article  CAS  PubMed  Google Scholar 

  88. Young P, Anderton E, Paschos K, White R, Allday MJ (2008) Epstein-Barr virus nuclear antigen (EBNA) 3A induces the expression of and interacts with a subset of chaperones and co-chaperones. J Gen Virol 89:866–877

    Article  CAS  PubMed  Google Scholar 

  89. Zarate S, Cuadras MA, Espinosa R, Romero P, Juarez KO, Camacho-Nuez M, Arias CF, Lopez S (2003) Interaction of rotaviruses with Hsc70 during cell entry is mediated by VP5. J Virol 77:7254–7260

    Article  CAS  PubMed  Google Scholar 

  90. Zhu XD, Li CL, Lang ZW, Gao GF, Tien P (2004) Significant correlation between expression level of HSP gp96 and progression of hepatitis B virus induced diseases. World J Gastroenterol 10:1141–1145

    CAS  PubMed  Google Scholar 

  91. Zuniga S, Sola I, Cruz JL, Enjuanes L (2009) Role of RNA chaperones in virus replication. Virus Res 139:253–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This manuscript was supported by grants from the Heart and Stroke Foundation of British Columbia and Yukon (HL) and the Canadian Institutes of Health Research (HL). JW is a recipient of a Doctoral Traineeship from the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, A., Wong, J. & Luo, H. Viral interaction with molecular chaperones: role in regulating viral infection. Arch Virol 155, 1021–1031 (2010). https://doi.org/10.1007/s00705-010-0691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0691-3

Keywords

Navigation