Skip to main content

Advertisement

Log in

Nuclear-export-signal-dependent protein translocation of dUTPase encoded by Singapore grouper iridovirus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The dUTPase is a ubiquitous and crucial enzyme responsible for regulating cellular levels of dUTP. In the present study, the expression pattern and translocation of a dUTPase homolog encoded by Singapore grouper iridovirus (SGIV) were elucidated. The SGIV ORF049R encodes a dUTPase homolog, which is a peptide of 155 amino acids that contains five conserved motifs. The temporal expression pattern during infection in vitro revealed that the SGIV dUTPase was an early transcript. A leucine-rich nuclear export signal (NES) at the C-terminus was predicted using CBS Online Servers. Subcellular location analysis showed that SGIV dUTPase is a cytoplasmic protein. Site-direct mutagenesis by overlap extension-PCR indicated that the NES is crucial for the translocation of SGIV dUTPase from the nucleus to the cytoplasm. We have discovered for the first time that the NES-dependent translocation of dUTPase is different for SGIV than for members of other species, which depend on a nuclear localization signal. These results provide new insights into the pathogenesis of fish iridoviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alefantis T, Barmak K, Harhaj EW, Grant C, Wigdahl B (2003) Characterization of a nuclear export signal within the human T cell leukemia virus type I transactivator protein Tax. J Biol Chem 278(24):21814–21822

    Article  CAS  PubMed  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  3. Békési A, Zagyva I, Hunyadi-Gulyás E, Pongrácz V, Kovári J, Nagy AO, Erdei A, Medzihradszky KF, Vértessy BG (2004) Developmental regulation of dUTPase in Drosophila melanogaster. J Biol Chem 279(21):22362–22370

    Article  PubMed  Google Scholar 

  4. Broyles SS (1993) Vaccinia virus encodes a functional dUTPase. Virology 195:863–865

    Article  CAS  PubMed  Google Scholar 

  5. Chew-Lim M, Ngoh GH, Ng MK, Lee JM, Chew P, Li J, Chan YC, Howe JLC (1994) Grouper cell line for propagating grouper viruses. Singap J Prim Ind 22:113–116

    Google Scholar 

  6. Dauter Z, Persson R, Rosengren AM, Nyman PO, Wilson KS, Cedergren-Zeppezauer ES (1999) Crystal structure of dUTPase from equine infectious anaemia virus: active site metal binding in a substrate analogue complex. J Mol Biol 285:655–673

    Article  CAS  PubMed  Google Scholar 

  7. Elder JH, Lerner DL, Hasselkus-Light CS (1992) Distinct subsets of retroviruses encode dUTPase. J Virol 66:791–794

    Google Scholar 

  8. Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2(4):924–932

    Article  CAS  PubMed  Google Scholar 

  9. Hiriart E, Farjot G, Gruffat H, Nguyen MV, Sergeant A, Manet E (2003) A novel nuclear export signal and a REF interaction domain both promote mRNA export by the Epstein–Barr virus EB2 protein. J Biol Chem 278(1):335–342

    Article  CAS  PubMed  Google Scholar 

  10. Lengyel J, Guy C, Leong V, Borge S, Rice SA (2002) Mapping of functional regions in the amino-terminal portion of the herpes simplex virus ICP27 regulatory protein: importance of the leucine-rich nuclear export signal and RGG box RNA-binding domain. J Virol 76(23):11866–11879

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Yamakita Y, Krug RM (1998) Regulation of a nuclear export signal by an adjacent inhibitory sequence: the effector domain of the influenza virus NS1 protein. Proc Natl Acad Sci 95(9):4864–4869

    Article  CAS  PubMed  Google Scholar 

  12. Lichenstein DL, Rushlow KE, Cook RF, Raabe ML, Swardon CJ, Kociba GJ, Issel CJ, Montelaro RC (1995) Replication in vitro and in vivo of a equine infectious anemia virus mutant deficient in dUTPase activity. J Virol 69:2881–2888

    Google Scholar 

  13. Muha V, Zagyva I, Venkei Z, Szabad J, Vértessy BG (2009) Nuclear localization signal-dependent and -independent movements of Drosophila melanogaster dUTPase isoforms during nuclear cleavage. Biochem Biophys Res Commun 381(2):271–275

    Article  CAS  PubMed  Google Scholar 

  14. Oliveros M, Garcia-Escudero R, Alejo A (1999) African swine fever virus dUTPase is a highly specific enzyme required for efficient replication in swine macrophages. J Virol 73:8934–8943

    CAS  PubMed  Google Scholar 

  15. Palmeri D, Malim MH (1996) The human T-cell leukemia virus type 1 posttranscriptional trans-activator Rex contains a nuclear export signal. J Virol 70(9):6442–6445

    CAS  PubMed  Google Scholar 

  16. Pasdeloup D, Poisson N, Raux H, Gaudin Y, Ruigrok RW, Blondel D (2005) Nucleocytoplasmic shuttling of the rabies virus P protein requires a nuclear localization signal and a CRM1- dependent nuclear export signal. Virology 334(2):284–293

    Article  CAS  PubMed  Google Scholar 

  17. Payne SL, Elder JH (2001) The role of retroviral dUTPases in replication and virulence. Curr Protein Pept Sci 2:381–388

    Article  CAS  PubMed  Google Scholar 

  18. Pyles RB, Sawtell NM, Thompson RL (1992) Herpes simplex virus type 1 dUTPase mutants are attenuated for neurovirulence, neuroinvasiveness, and reactivation from latency. J Virol 66:6706–6713

    CAS  PubMed  Google Scholar 

  19. Qin QW, Chang SF, Ngoh GH, Gibson-Kueh S, Shi C, Lam TJ (2003) Characterization of a novel ranavirus isolated from grouper, Epinephelus tauvina. Dis Aquat Organ 53(1):1–9

    Article  CAS  PubMed  Google Scholar 

  20. Reed ML, Howell G, Harrison SM, Spencer KA, Hiscox JA (2007) Characterization of the nuclear export signal in the coronavirus infectious bronchitis virus nucleocapsid protein. J Virol 81(8):4298–4304

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez JJ, Cruz CD, Horvath CM (2004) Identification of the nuclear export signal and STAT-binding domains of the Nipah virus V protein reveals mechanisms underlying interferon evasion. J Virol 78(10):5358–5367

    Article  CAS  PubMed  Google Scholar 

  22. Scheifele LZ, Ryan EP, Parent LJ (2005) Detailed mapping of the nuclear export signal in the Rous sarcoma virus Gag protein. J Virol 79(14):8732–8741

    Article  CAS  PubMed  Google Scholar 

  23. Song WJ, Qin QW, Qiu J, Huang CH, Wang F, Hew CL (2004) Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. J Virol 78:12576–12590

    Article  CAS  PubMed  Google Scholar 

  24. Teng Y, Hou ZW, Gong J, Liu H, Xie X, Zhang L, Chen X, Qin QW (2008) Whole-genome transcriptional profiles of a novel marine fish iridovirus, Singapore grouper iridovirus (SGIV) in virus-infected grouper spleen cell cultures and in orange-spotted grouper, Epinephulus coioides. Virology 377(1):39–48

    Article  CAS  PubMed  Google Scholar 

  25. Tinkelenberg BA, Fazzone W, Lynch FJ, Ladner RD (2003) Identification of sequence determinants of human nuclear dUTPase isoform localization. Exp Cell Res 287(1):39–46

    Article  CAS  PubMed  Google Scholar 

  26. Turelli P, Guiguen F, Mornex JF, Vigne R, Querat G (1997) dUTPase minus caprine arthritis-encephalitis virus is attenuated for pathogenesis and accumulates G-to-A substitutions. J Virol 71:4522–4530

    CAS  PubMed  Google Scholar 

  27. Turelli P, Petursson G, Guiguen F (1996) Replication properties of dUTPase-deficient mutants of caprine and ovine lentiviruses. J Virol 70:1213–1217

    CAS  PubMed  Google Scholar 

  28. Watanabe D, Ushijima Y, Goshima F, Takakuwa H, Tomita Y, Nishiyama Y (2000) Identification of nuclear export signal in UL37 protein of herpes simplex virus type 2. Biochem Biophys Res Commun 276(3):1248–1254

    Article  CAS  PubMed  Google Scholar 

  29. Weigel S, Dobbelstein M (2000) The nuclear export signal within the E4orf6 protein of adenovirus type 5 supports virus replication and cytoplasmic accumulation of viral mRNA. J Virol 74(2):764–772

    Article  CAS  PubMed  Google Scholar 

  30. Williams P, Verhagen J, Elliott G (2008) Characterization of a CRM1-dependent nuclear export signal in the C terminus of herpes simplex virus type 1 tegument protein UL47. J Virol 82(21):10946–10952

    Article  CAS  PubMed  Google Scholar 

  31. Williams T, Barbosa-Solomieu V, Chinchar VG (2005) A decade of advances in iridovirus research. Adv Virus Res 65:173–248

    Article  CAS  PubMed  Google Scholar 

  32. Wohlrab F, Francke B (1980) Deoxyribopyrimidine triphosphatase activity specific for cells infected with herpes simplex virus type 1. Proc Natl Acad Sci 77:1872–1876

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Z, Ke F, Gui JF, Zhang QY (2006) Characterization of an early gene encoding for dUTPase in Rana grylio virus. Virus Res 101:119–126

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Chinese Academy of Sciences (KZCX2-YW-BR-08), National Basic Research Program of China (973) (2006CB101802), Natural Science Foundation of China (30930070, 30725027, 30700616) and National High Technology Development Program of China (863) (2006AA100306, 2006AA09Z445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Wei Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, J., Huang, YH., Huang, XH. et al. Nuclear-export-signal-dependent protein translocation of dUTPase encoded by Singapore grouper iridovirus. Arch Virol 155, 1069–1076 (2010). https://doi.org/10.1007/s00705-010-0684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0684-2

Keywords

Navigation